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Summary

During my Ph.D | developed, in collaboration with Mauriziomafede and Eleonora
Rivalta, a mathematical model describing uid- lled cragkopagation in pres-
ence of elastic, density and fracture toughness discatyiof the embedding
medium. Fluid- lled cracks are modelled in plane strain guration employing
the boundary element method. Analytical solutions for tisbodation elements
are employed, the solutions are built starting from the warkBonafede & RIi-
valta (1999) and Rivalta et al. (2002) and are generalisedrtutrary tilted ele-
mentary closed dislocations.

The pressure gradient along the crack is assumed propaltiorthe difference
between the densities of the host rock and the uid. Mass emasion is im-
posed during propagation and uid compressibility is taketo account. The
path followed by the crack is found by maximising the totatkgy release, given
by the sum of the elastic and gravitational contributions.ehergy threshold for
propagation, depending from the fracture toughness of g%t tock, is consid-
ered. Gravitational energy plays a major role during pr@pag also in absence
of density layering; in particular, in proximity of layer badaries, this role is en-
hanced by the shift of the centre of mass due to shape changes.

The mathematical simulations, in presence of elastic discoities, provide a
sort of “refraction phenomenon”, that is a sudden changkerdirection of prop-
agation when the crack crosses the boundary separatimgadiffrigidities: if the
dike enters a softer medium, its path deviates toward thecagrif the dike enters
a harder medium its pats deviates away from the vertical aag ewen become
arrested as a horizontal sill along the interface, if thelitg contrast is large.
Density layering do not in uence the direction of propagatof the dike. A den-
sity discontinuity of the host rock causes length and thedswariations and can

Xiii



Xiv SUMMARY

provides the arrest of the dike if the density of the host rdakot yields enough
buoyancy to overcame the energy threshold for propagalendensity layer).
Fracture toughness discontinuities are considered inrdodeeproduce the con-
dition of weakly welded layers. In this cases the energatdepred path, when
the dike encounters the interface, is the boundary betweetayers. For these
simulation is shown, in different rigidity and density laiyey con gurations, the
required fracture toughness drop on the interface, in or@@btain propagation
along the interface.

For validating the mathematical ndings laboratory expeents were performed
injecting tilted air- lled cracks at the bottom of a trangpat cylinder containing
two elastic gelatin layers with different rigidities. Ckacare observed to deviate
when they cross the rigidity transition surface. The expental observations are
compared with the numerical results. Analysis of the expental data con rm
qualitatively and quantitatively the main characterso€ the mathematical simu-
lations. The laboratory work took place at the 'School oftBand Environment',
University of Leeds (UK), during a period of six months in whil started the
collaboration with Eleonora Rivalta.



Chapter 1
Introduction

Recent studies on continental rift zones have evidenceewaqusly unsuspected
role of magmatism in extensional tectonics. Large scalensiei experiments
highlighted the presence of re ective high-velocity stwes in the deep crust,
interpreted as a series of stacked sill-shaped intrusivgdd & Nielsen (2009);

White et al. (2008). No melt seems to have accumulated inppemnost mantle
(40-60 km depth) as no area of low seismic velocity has beanddhere. Sills

must have been generated by a series of dikes ascendingtaratting with the

tectonic stress, rheological transitions and previousigibns. It is not yet ascer-
tained what mechanism leads to the formation of stackes] sithat role is played
by the Moho, and how the ascent trajectory of dikes is modbgabrupt changes
in the (visco)elastic properties of rock caused by eithexjmusly emplaced sills
or the Moho.

Early analytical investigations on the geometry of propemgpdikes include
Weertman (1971, 1973), Pollard & Johnson (1973), Secor 8aRb(1975), Pol-
lard (1976). These works develop a simple but powerful fraor& based on
buoyancy and rock resistance. A linear pressure gradietiti@crack plane and
signi cant fracture toughness result in an inverse teapdshape. More compli-
cated shapes describe different con ning stress or dripirggsures. Applications
include hydrofractures, water crevasses in glaciers, naagdjkes.

Local and regional stresses undoubtedly control the daeaif dike propa-
gation. Detailed statistical analysis of dike orientattam be employed in order

1



2 CHAPTER 1. INTRODUCTION

to infer the local stress and paleostress history (see eagnbhi & Gudmunds-

son, 2000), assuming that dikes orient themselves alorgjthetion of maximum

compressive stress and open up in the direction of minimumpcessive stress.
However, other factors may in uence the energetics invdlirethe opening and
propagation of dikes. The strain energy released during eifiplacement is pro-
portional to the elastic parameters of the hosting mediumthis way, hetero-
geneities or other sources of anisotropy may cause a chartpe ienergetically
preferred opening direction and path.

Other authors, assuming vertical propagation, concentratsolving the full
system of equations describing the motion of viscous bubyad within the
crack and the elastic resistance of the hosting medium|(ester, 1990; Lister &
Kerr, 1991; Spence et al., 1987). Meriaux & Jaupart (199&) time-dependent
numerical solution of the coupled problem for a buoyandyair magma- lled
crack, growing and propagating in an elastic plate on topretarvoir at constant
pressure. Dahm (2000a) solves numerically the interagiroblem of viscous

ow within the crack, elastic response of the hosting roclddracturing. He

predicts a high pressure gradient at the tail of the fractuhere a singularity
would be present unless small quantity of uid is left behinRoper & Lister

(2007) extend the results of Lister (1990) to model the cakenathe fracture
toughness of the hosting rock is large. The shape of the hegadir of the dike
varies signi cantly with the stress intensity factor anadcbees very similar to the
typical tear-drop “Weertman” shape. Viscous effects aalritre propagation rate.
Viscous stress drop is signi cant only at the crack tip andhmi the tail region,

while it is negligible in the head, where the pressure graidgenearly hydrostatic.
The fracture has a complicated shape (see Roper & Listei,Z09. 10), with a

nose - head region followed by a neck-tail-knee structurg semilar to the one
depicted in Dahm (2000a), Fig. 6a.

Dahm (2000b) develops a boundary-element model for a dide buoyancy-
driven crack, propagating in a homogeneous half-spacdyistg how stress and
density heterogeneities govern the direction of dike pgapian. In this model,
the crack is lled with a non-viscous batch of uid with corestt mass and, while
advancing, it closes at its bottom leaving a broken trailibheéh Propagation is
driven by the release of elastic strain energy. A similar sladas used by Kilhn



& Dahm (2004) to study the focusing of dikes ascending frorargd melt zone
to a narrow mid-oceanic ridge, and by Kohn & Dahm (2008) teestigate how
stress affects dike interaction. Applications includeetbd dikes and magma
chamber formation at mid-oceanic ridges.

All the mentioned papers model dikes as 2D uid- lled cracksa homo-
geneous medium. Attempts to extend the models to 3D or taddymedia are
limited to static cracks. Gudmundsson (2005) analysesitbhemce of local stress
and layering on dike propagation in volcanic areas, assgihiat dikes propagate
in the direction of the maximum compressive stress. Stretrhgeneities due to
abrupt changes in the elastic properties of different lsyeay cause the arrest of
dikes at shallow crustal depths while homogeneous stresditcans favour dike
propagation to the surface.

Rubin (1995) reviews the many physical processes in uendike propaga-
tion and examines their assumptions critically. He conetudith an outline of
major unresolved problems related to dikes. Among othexipghlights the rel-
evance of crack growth, magma buoyancy and the ductilgiekaansition in the
host rock.

From an experimental perspective, signi cant progressiieeen made in the
understanding of dike propagation by using gelatin as & anslogue and various
uids as magma. Gelatin approximates well an elastic mediitis brittle at re-
frigerator temperature and its rigidity can be controllgdvarying the concentra-
tion of dry gel powder dissolved in water. Among others, Tdkg1990) describes
observations of the shape and velocity of cracks lled withds of different den-
sity and viscosity. He nds that crack shape correspondseacanalytical formu-
lation described in Pollard & Mueller (1976); Weertman (1971973). Heimpel
& Olson (1994) study dike propagation performing experitseon buoyancy-
driven uids injected into gelatin. They vary the buoyanggjume and viscosity
of the uid over orders of magnitude and use several differgelatin concen-
trations. They focus mainly on propagation velocities hitfging two regimes
of propagation: a “low velocity” regime, with subcriticalress intensity factor
and a “fast velocity” regime with super-critical stressansity factor. The prop-
agation velocity is found to depend on the uid buoyancy, yiedd strength and
fracture toughness of the solid medium, and on the size ofuide lled frac-
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ture. Ito & Martel (2002) study dike-dike interaction conding that the stress
eld induced by a previous dike stuck in a medium would attfatiowing dikes
causing magma accumulation. Watanabe et al. (2002) pesfarseries of ana-
log experiments on crack propagation in presence of anmeadtstress eld. In
particular they concentrate on the effect of the topograptad and study crack
path for different ratio of the shear stress on the crackelarthe average uid
excess pressure. They also perform experiments of interaloetween two par-
allel cracks studying the dependence of path deviation byrdhio of the shear
stress generated by one crack to the average excess pretfuzesecond. They
nd more de ection for cracks with larger ratio and no de acoh for ratios less
than0:2. Rivalta et al. (2005) investigate the role of layering okeddbropagation.
They observe approximate steady-state regimes whenlau-fractures propa-
gate within one layer, while signi cant changes in shape agldcity occur while
the fractures are crossing the layering interface. Carahallysis of the propa-
gation path shows that even during the so called steadg-stgimes, fractures
accelerate if they approach a less rigid medium or the frelasel and deceler-
ate in the opposite case. Fractures are found to stop at thedboy when they
contain a subcritical volume of uid with respect to the uppgedium. They also
observe sill formation along the boundary if the rigidityntiast is large. (Rivalta
& Dahm, 2006) concentrate on free-surface induced acdelara&Kavanagh et al.
(2006) perform analogue experiments injecting water iretay gelatin. They fo-
cus on sill formation at the transition surface from a complito a stiffer medium.
Complete conversion from dike to sill propagation is obsdrior large driving
pressure and high rigidity ratio between layers, while dikeest is observed in
condition of lower driving pressure and low rigidity corgta. Hybrid dike-sill
forms are observed for intermediate values of driving press and rigidity ra-
tios.

Different methodological approaches often lead to difiémnclusions about the
dominating factors. This results in a contradictory imafenagma propagation,
and a coherent theory of dike dynamics is still missing. &hd evidences, the-
oretical and analogue approaches have rarely been comneeate a more
heuristic picture of dike emplacement and propagation.

The aim of this thesis is to study the in uence of layering be propagation



of uid- lled fractures in general and magma- lled dikes iparticular.

The Chap. 2 will be devoted to present the mathematical vackg on in-
clined elastic dislocations in layered media. Then a dedadlescription of the
numerical algorithm is given. The dike is modelled as a uidd boundary el-
ement crack in plane strain con guration. This approachh problem of crack
propagation was partially inspired by the work of Dahm (2000A welded in-
terface between different elastic media is taken into astasing analytical so-
lutions from Bonafede & Rivalta (1999) and Rivalta et al. 2 so that the
present model extends to heterogeneous media resultsiettay Dahm (2000b)
for a homogeneous medium. Moreover, in the present workptassure gradi-
ent along the crack is assumed to be proportional to therdiifee between the
densities of the host rock and the uid. A nite batch of magnsaconsidered
and the compressibility of the uid is taken into account ider to conserve the
mass of the intrusion during its motion. The mathematicadleiallows us taking
into account an external stress eld, density strati catiand fracture toughness
heterogeneities. The growth, arrest and direction of pgapan of the crack is
governed by an energetic criterion: the motion of the dikdrigen by the min-
imisation of the total energy, given by the sum of the elastiain energy and
the gravitational potential energy — ignored by Dahm (2000Propagation is
allowed when the energy release exceeds a fracture enesghtiid.

The numerical model provides the path followed by the cragknd) propagation,
as well as its shape and the stress and displacement eldseadn the surround-
ing medium.

In Chap. 3 the ndings for the following relevant cases alestrated (see also
table 1.1):

CASE 0, CASE 1-1b and CASE 2: homogeneous medium, trangrbama
rigid to a compliant medium, interaction with the free sedand transition
from a compliant to a rigid medium.

CASE 3, CASE 4 and CASE 5: density layering in a homogeneastiel
medium, in a medium with transition from a rigid to compliartd vice-
versa.

CASE 6, CASE 7 and CASE 8: fracture toughness heterogeseittee pre-
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CASE T L - 2 EQ — EF

(GPa) (kg/n) (MPam)
0 30 - 30 3300 - 3300 0O - 0
1 30 - 1.5to24 3300 - 3300 0O - 0
1b 30 - O 3300 - 3300 o - /
2 1.5t024 - 30 3300 - 3300 0O -0
3 30 - 30 3000 — 2800and?240D0 1 - 1
4 30 - 12 3000 — 2800and?240D0 1 - 1
5 12 - 30 2800 - 3000 1 - 1
6 30 - 30 3000 - 3000 35 - 1
7 30 - 12 3000 - 2800 52 - 1
8 12 - 30 2800 - 3000 15 - 1

Table 1.1:Parameters used in the shown cases. The index 1 and 2 réfer tstt(lower)

and second (upper) Iaydf$ is the energy threshold for propagation in the medium and
EY on the interface separating the two layers. The densityepiittiusion is 2600 kg/f
with a Bulk moduluK; = 10 GPa and a volume (per unit lenght) =3 10 3 kn?.

vious con gurations are tested reproducing the conditibweakly welded
layers.

The last paragraph of Chap. 3 is dedicated to a performarelgsas of the ele-
mentary dislocation approximation close and across thadaty between differ-
ent rigidities.

Chap. 4 is dedicated to the analogue experiments performedlidate the
ndings of the theoretical model. The ascent of tilted alled cracks propagating
through layered gelatins was observed and the experimesialts was quantita-
tively compared with the results of the numerical model.
The laboratory work presented in this chapter consist iaglexperiments:

CASE 0: a tilted air- lled crack propagates through a homogeaus layer
of gelatin until it reaches the free surface.

CASE I: the tilted air- lled crack starts the propagatiomn the bottom of
arigid layer of gelatin and it enters in a compliant layer.

CASE II: the tilted air- lled crack starts the propagatiana compliant layer



of gelatin and it reaches and passes the boundary with a ngidegelatin
layer.

The path and shape of air- lled cracks were measured fronréberds of the ex-
periments. The parameters of the gelatin was measured amtutherical model
was set to that values to compare the output with the expatathebservations.

In Chap. 5 the developed mathematical model and the anakqeriments
are discussed and an overview on the implication of this iamrilike propagation
in the crust is presented. A paragraph with the future pbgdiévelopment of the
mathematical model conclude this chapter.
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Chapter 2

Mathematical model

2.1 Oblique dislocations in a homogeneous medium

Let us consider a dislocation surface oriented according to the unit norml
and bounded by a dislocation lin2, over which the displacement suffers a
prescribed jumg (termed as the Burgers vector): the dislocation conditi@y m
be simply written |

duy = b (2.1)

whereL a closed contour encircling the dislocation libe(Figure 2.1). In a
homogeneous isotropic elastic medium, the equations gmgethe equilibrium
con guration of the surrounding medium can be written (e.gndau & Lifschitz,

1967): 1

1 2
where is the Poisson ratio of the elastic mediufmis the unit vector alond®
and™a 2D vector with origin oD, spanning a surfacg_ bounded by the contour
line L. It may be noted that the orientationof the dislocation surface plays no
explicit role in the equilibrium equation (2.2): only thesthcation line appears
through its orientatiort and the Burgers vectdr.

rc w+r?u=~ b (O (2.2)

For a homogeneous unbounded medium, simple analyticali@atuexist if
the dislocation surface is a half-plane (and the dislocdtite is the straight line
bounding it). Three independent elementary dislocatioag be considered, ac-

9
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Figure 2.1:Scheme and notation employed to describe a dislocatioacrirf

cording to the relative direction df; » andn: a screw dislocation hdsparallel to

A, an edge dislocation hdisperpendicular t@* andn, a tensile dislocation hds
parallel ton and perpendicular t6. In the following we shall restrict to consider
tensile and edge dislocations.

If ~is along they axis, a plane strain con guration may be assumed and the
displacement eld due to a vertically dipping tensile dishtion surface, witlp
alongx, is

) 1 xz
(x) = X) .
uf > Yo e B g, (x; 2)
(2.3)
) z?
x) = = X) .
ug id ) (L 2)Inr+ = B g,(x; 2)

where the superscripf denotes the direction of the Burgers vector, P X2+ 72
and 2 [ ; + ]isthe clockwise angle around theaxis shown in Figure 2.2-a:

(

if x>0
ifx< 0

5 +arctan

2.4
5 tarctan (2.4)

XN X [N

It is easily shown that is continuous and differentiablezf < 0, while it jumps
from to+ whenx changes sign, iz > 0.
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b/2

oblique tensile
| | | |

(X, Z) X X X (X, 2) X
b(”) b(><)
= + b N

z z Z z

(©

Figure 2.2: (a) A vertically dipping tensile dislocation has the saméuton of an
obliquely dipping dislocation with horizontal Burgers e if °is employed instead
of . (b) A vertical edge (dip-slip) dislocations has the samat&m of an oblique dislo-
cation with vertical Burgers vector, if° replaces . Tensile (c) and edge (d) dislocations
on obliquely dipping surfaces may be written as linear corations of type (a) and (b)
dislocations.

The solution for a vertical dip-slip dislocation withalongz is

52 22

2 = _ -~ —_ = z) .
u A 1L 2)nr = B2 hy(x; 2)
(2.5)
(v 1 xz
(Z) = _ . - Z) .
us > 50 )r2 B?h,(x; z)

where the superscrif? denotes the direction of the Burgers vector.

Shifting the dislocation line fronx = z = 0 to X = X;;z = Zz; simply
requires a translation of coordinates, which is obtaingdae@ngx andz with
X Xpandz z inthe previous formulas. Since the equations (2.1-2.2)ato n
depend on the orientation of the dislocation surface, ifdiséocation half-plane
dips at an arbitrary angle 6 5 with respect to the horizontal plarze= 0, the
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same equations (2.3-2.5) hold, provided thas substituted by the angle’with
a jump discontinuity along the dipping half-plane; if therishlesn ands are
introduced (Figure 2.2a-b)

n=(x Xxg)sin (z z))cos (2.6)
S=(Xx X1)cos +(z z7)sin '
(n is normal to the dislocation plane asdn the dip direction), we obtain
simply:

S. i
0 s +arctan ~; ifn>0

_ (2.7)
s +arctan 5, ifn<O0

It is to be noted that the strain and stress elds are indepehaf the dip angle,
since and “have the same derivatives with respeck tandz.

However, after is replaced by © eq.n (2.3) provides the solution for a
Burgers vector along, which is no longer perpendicular to the dislocation sur-
face. Similarly, eq.n (2.5) still provides the displacernehen the Burgers vec-
tor is alongz, which is no longer parallel to the obliquely dipping disdion
surface. Accordingly, an obliquely dipping tensile disition, opening by (™
in the direction perpendicular to the dislocation surfalcas K" = " sin |
K" = B cos and the solution is

(

() — Kn ; n
ux’ = BWgcsin  KWh, cos
e ‘ (2.8)
uz’ = Vg, sin  BMh, cos
Similarly, a shear dislocation slipping /® in the direction parallel to the
obliquely dipping dislocation plane, h&§ = B cos andi® = U9 sin ; the
solution for the displacement due to an inclined dip-sigatiation is then

(

u = ¥9g, cos + I9h, sin

2.9
u® = ¥9g, cos + H9h, sin (2.9)
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2.2 Obligue dislocations in a layered medium

If the medium is composed by two half-spaces, endowed willerdint elastic
parameters, welded along the plane 0, equations (2.3-2.5) must be replaced
by the solutions for elementary tensile and edge dislonatwovided in Bonafede
& Rivalta (1999) and Rivalta et al. (2002) for a verticallyp@ing dislocation
surface. These solutions were obtained employing theisaki{2.3-2.5) in each
of the two half-spaces and employing an appropriate Loviearsfunction to
remove discontinuities which would appear in traction arsgplhcement over the
welded interface = 0. These analytic solutions still contain terms proportiona
to , needed to ful | the dislocation condition (2.1), and aretwen explicitly in
the Appendix A. Here we shall indicate them formally as:

W zixiz; = 5) = BIG(x 21 21) (2.10)
U Zixaz = 5) = BIG(X 2% 21) |
for a vertical tensile dislocation, whegg contains a term-, and
(
WOz 21 = )= BPh(x2ix1:21) (211)
U (6 Zix 2 = 5) = BOh,(x 251 20) |

for a vertical dip-slip dislocation, whet, includes a term-.

If a dipping dislocation surface in a layered medium is cdesed, the same
formulas still hold, provided only that is replaced by °in g, and inh,; we
write them as:

ui(X)(X;Z;X1;21; ) = B9gAx; 2, X1, 215 )

i = X, Z:
ui(Z)(X;Z;X1;21; )= b(z)hio(X;Z;Xl;Zl; )

In the following, it will be convenient to consider Burgersatorsb™ perpen-
dicular andb(® parallel to the dislocation plane. If the former (normalfyeming)
con guration is considered we haw®” = BV sin andb” = K" cos , so
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that

ui(”)(x;z;xl;zl; ) = B [ d¥x;z;x1;21; )sin
hX(x;z;x1;21; Jeos ], i=xz

If the latter (dip-slip) con guration is considered, we leekl® = 0¥ cos and
b = B9 sin , so that

ud (6 zixz; ) = B9 [ gAxiz;xyzi; )cos +
hio(x;z;xl;zl; ) sin ], i1=xz:

Finally, we can write the displacement eld for a tilted elentary dislocation
with arbitrary Burgers vectob as the sum of the displacement elds due to it's
component$™ perpendicular antd® parallel to the dislocation surface (see Fig.
2.3c,d). We have:

Ui (X Z: X1 21 = B" Gi(x:z:Xyz )+
I( 1, 41 ) I( 1, £1 ) . (212)
B Hi(x;z;x1;2z1; ); i=x2z:
where:
Gi = g¥x;z;X1;21; )sin h(x; z; X1; z1; ) cos

H; gAx;z;X1;21; )cos + h%(x;z;xy;2z1; )sin

A nite (along dip) dislocation surface between; z; andxs,; z,, with Burgers
vectorb, is simply obtained subtracting from the solution (2.12)hadislocation
lineinx = X;;z = z; the same solution with dislocation line ¥3; z,: such a

nite dislocation surface will be termed “dislocation elemt”. If c is the half-
width of the dislocation element, amd; zy are the coordinates of its mid point,

c= %p (X2 X1)?+ (22 21)?

Xo= 2(X1+ X2); Z0= 3(za+ 22)

we may write the displacement for a closed dislocation etgro&élengthl = 2¢
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as:

uf(x;z;X0;20; ) = HB™  Gi(X;z;X0;20; )+
B Hi(X;z;%0,20; ); 1= X2z

where:

Gi(X;z;%X0;20; )= Gi(X;Z;X1;21; ) Gi(X;2;X2;22; )
Hi(X;Z; X0 20; ) = Hi(X;Z;X1;20; ) Hi(XZ:X2;22; )

From the expression (2.13) we can easily calculate the oheftton and the stress
elds. For the stress tensor we obtain the expression:

C(XZ;X0iZ0r ) = BW SV(xizix0iz0; ) + (2.14)

B9 S (x;2;%0:20; ) '
where Sﬁ”)(x; Z;Xo;20; ) and Sigs)(x;z;xo; 2o, ) are built following the same
procedure outlined above for the displacement eld: wetdtam the stress led
generated by a vertically dipping tensilei(jy()) and dip-slip (i(jz)) semi-in nite
elementary dislocations:

K%z xas 1) = B0 (%25 %03 22)
I = X;z: (2.15)
(% z;x1521) = DS (%25 %15 1)

where thdoading function$i(jx)(x; Z;X1;21) andsi(jz)(x; Z;X1;2;) are respectively
equals tay;; andh;; (i.e. the derives inx andz directions of the functiong and
h;) and are explicitly written in Appendix B.

For an obliquely dipping surface the stress eld generatga ensile (i(j”)) and
dip-slip ( i(js)) semi-in nite dislocations are:
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czixszg ) = BVS06zixaz)cos 8P (6 Zixaizi)sin ]

(s)(x Z;X1,21; ) b(s)[so(x)(x Z;X1,71)COS + so(z)(x;z;xl;zl)sin ]

i = X;z:

where the loading functions)™ (x; z; x1; z1) and sj'”(x; z; x1;21) are respec-
tively equals togi;j and hi?j (|.e. the derives ik andz directions of the dis-
placement's loading functiorg andh). It is easy to notice thai) = g; and
h2 = h;; so that we can write:

Mz 217 )= BVSP(xzi %0227 )

Oazixiz )= B98O zixizi )

with

Sé”) = (X)(x Z;X1;Z1) COS si(jz)(X;Z;Xl;Zl) sin

Sigs) = si(x)(x Z;X1;Z3)COS + s (x Z;Xq1;27)Sin

nally, we obtain the solution for the stress eld generateygla closed dislocation
surface (eq. 2.14) subtracting the solution for a dislaraline x,; z,:

(”>(x Z;X0. 20, ) S(”>(x;z;x1;zl; )
Sﬁ”’(x;z;XZ;zZ; )

(2.16)

= S zix2 22 )
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It must be noted that the tensorial functisﬁjll? andsi(js) do not depend onbecause

they are obtained through differentiations and linear cimvatoons of the functions
g’andh?, where appears only in the term® and it was already noted thatand
%have the same derivatives with respeck tandz. This means that, in terms of
stress (and deformation too), the only parameters thabchaise an elementary
dislocation, are the position of the dislocation line anel Burgers vector.

Finally, tractions acting on the dislocation plane are oigd from equation
(2.16) performing a rotation of coordinates by an angke according to
the usual rules of tensor algebra. In order to simplify th&ation, we shall write
N";S" for the normal and shear componentS'y: S due to a normally
opening dislocation element with Burgers vectbrand N ®; S° for the normal
and shear componentsS,(ﬁ); & due to a dip-slip dislocation element with
Burgers vectob’.

2.3 Crack model

In a “crack model” of a dike, the normal tractiorand the shear tractionreleased
over the dislocation surface are prescribed instead of tngds vector. If a
normal traction ° and a shear tractior? were present before dike emplacement
and they drop to ! and ! after emplacement, crack opening must provide a
normal traction * 0= and a shear tractiont %= . We may easily
calculate the Burgers vector needed to generate thesetract the mid point
(Xo; Zo) of a dislocation element (Figure 2.3-a):

8

S BPN"+PN°=

(2.17)
B'S" + PSS =

where the stressé¢"; N andS"; S° were introduced at the end of the previous

section. This linea2 2 system allows to calculate the tensile and shear compo-

nentsk' andb’ of the Burgers vector when the stress dropand are assigned.
According to the boundary-element technique of solutiocragk may be ap-

proximated by a distribution of dislocation elements wilffiedent Burgers vectors

(to be determined) as sketched in Figure 2.3-b. The norraelitm and the shear
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Figure 2.3: (a) Normal and shear tractions released at the mid-point dikacation
element; (b) the boundary element approximation of a crack.

traction at the mid point of each dislocation element areegetal respectively to

and and, from these conditions, the Burgers vector is compute@dch
dislocation element. Of course, the approximation is lbéttbe discretisation is
ner and a curved crack surface may be approximated if theadigle ; is allowed
to vary.

2.3.1 Boundary element technique: a set of elementary inter
acting dislocation

In the following mathematical model, a dike is representec &rack, built ac-
cording to the boundary element technique. A boundary ei¢meck is made
by N interacting dislocation elements (see Fig. 2.3), openiitgiwan elastic
layered medium, under assigned stress (or pressure) cumdirescribed at the
centre of each dislocation element. The mathematical prold be solved con-
sists in balancing the stress, produced by all halislocation elements at the
centre of each dislocation, with the assigned normal andrsdteess drop at that
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point. Sothe 2linear systemin (2.17) generalises tah 2N linear system:

1=1 with i=1; ;N (2.18)

%XN FNp+ NS =
E +l:fS = i

whereld' andl® are the normal and dip-slip components of the Burgers vexftor
thej -th dislocation element,; and ; are the normal and shear tractions released,
at the mid-point of the-th dislocation, andNj', Si', N andS;§ are the in uence
coef cients, i.e. the tractions computed at the mid-poihttee i-th dislocation
(X = Xi;z = ), due to thg -th dislocation with mid-point irf{xo = X;; 2o = 7).

The linear system (2.18) is then solved with the additiooaistrainty’ O,
since negative values @f would provide interpenetration of matter. In order to
ful I this condition, we devise a simple iterative methodathconverges well for
our purposes.

2.3.2 Fluid lled fractures

In the following we shall consider a nite batch of magma, hvdassigned mass
My, ascending through an elastic medium. During magma aseewtfractures

develop above the top of the dike while dike walls come intotaot again near
the bottom.

In a uid- lled dike, the normal stress after emplacementis= p; (uid
pressure) while the shear stress vanishes: 0, if the dike lling uid moves
slowly enough to neglect viscous friction on crack walls. cAingly, we put

=p+ %= P ( Pisthe“overpressure”)and= ©inther.h.s. of eq.n
(2.18).

For the sake of simplicity, we shall not consider any deviatoomponent in
the initial stress eld. More speci cally, the initial norad stress ? at the centre of
thei-th dislocation element, has the lithostatic gradientg (proportional to the
density , of the elastic medium and to the gravity acceleratipwhile ! has the
hydrostatic gradient ¢ g (proportional to uid density ¢ ). We take into account
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that uid density may change according to dike volume in ordeachieve mass
conservation. A reference con guration is considered irichitthe overpressure
is assigned over the crack lendth as

Po(z)=(m 00 % (2.19)

where Py(z) is the over-pressure &, ; is the density of the embedding
medium, o is the uid density and z is the difference between the depth
of the bottom of the crack and the mid-pomf thei-th dislocation element (see
Figure 2.3).

We assume this as the reference con guration, in which tlermessure van-
ishes at the bottom tip and the volume of the intrusion andetssity assume the
reference value¥, and (. We shall consider a nearly incompressible uid, with
very high (but nite) bulk modulus;, so that ; is practically independent of
pressure changes;( o), while pressure is highly sensitive to volume changes,
according to

V. V%

P« = K
K fVO

(2.20)

During propagation, any variation of the crack volume frdnto V implies a
uid density variation;

£ = ot ¢ (2.21)

where

(2.22)
During propagation the overpressure is then

P(z)=(+ )9 z+ P (2.23)
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Figure 2.4: Overpressure in a uid- lled crack: (a) reference con guian, with

overpressure Po(zi) = (
+ PK .

P(z)=(r+ )9 z

0)9 z; (b) actual con guration with overpressure

Substituting equations (2.19) and (2.21) in (2.23) we obtali

P(z)=

Py +

i 0 Z

(2.24)

For a boundary element crack, we can express the voliras:

(2.25)

wherel = 2cis the length of the dislocation elements constituting tiaek. Note
that all volumes in ouD plane strain model, are meant per unit length along the

y axis.

By equation (2.25), we can express equation (2.20) as:

PK:

K X
Vo =

I g+ K

(2.26)
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and similarly, substituting (2.25) in equation (2.22), wxan:
o X
= o 1)+ o (2.27)

Now, substituting in equation (2.24)Py from (2.26) and ¢ from (2.27), we
obtain:

P(z)= Po(z)+ K og z + (2.28)

(K 00 Z)—( tf)

j=

Hence Eq. (2.18) becomes:

j=1

with i=1; ;N (2.29)

% §N]+ NS = P(z)
E +ka =

whereN = Lo=I. Substituting the over-pressure pro le (2.28) in the linsgstem
(2.29) we obtain:

Vo * qSNijs -
= Po(z)+ K¢ 09 z (2.30)

%*“ s o

% n o, I(Ki o009 Z)

with i=1;2; ;N
The linear system (2.30) can be further simpli ed notingtthwgpically
K 09 Z

since, for a km-long magma- lled fracture, we hate ' 10°°Pa,ando,g z™ '
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Figure 2.5:Model parameters employed to describe crack propagation.

3 10* 10 10° =3 10 Pa. Then, neglecting the terrgg z in (2.30), we
obtain:

1=1 (2.31)

8 N |

30 NG BN = P+ K
27 g egs <o

1

j:
with 1=1;2;, ;N

The growth and propagation of the dike is modelled iterdyiMay adding a dis-
location element at the top of the uid- lled crack and defe, if this is the case,
dislocation elements with’ 0 at the bottom. When this happens, the stress
intensity factor vanishes at the bottom end: this assum@grees with the fact
that the elastic medium is left fractured after the crackspgs and cannot sustain
any tensile stress (see Fig. 2.4b).

At each step of our iterative mathematical model, we rewemal the pressure
pro le in order to calculate the new equilibrium con gurati of the crack. Fluid-
dynamic effects are not considered, since the model desciiie propagation
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path as a sequence of static equilibrium con gurations shiould be a reasonable
approximation if the propagation velocity and the uid vasity are low.

As far as the crack is far away from the rigidity discontizum z = 0, the
volume increase due to the opening of a new dislocation eleethe top, is
accompanied by a simultaneous, uniform, pressure drogrtates the closing
of the bottom dislocation element. When the crack is closerigidity disconti-
nuity, the number of closing dislocations at the bottom,dach new dislocation
opening at the top, may vary depending on the rigidity cattrae  ,= ;. If the
crack migrates toward a higher rigidity layerX 1), it may happen that no dislo-
cation closes at the bottom since the length of the dike hagtease in order to
conserve the mass of the intrusion, due to the minor opemhinge( ') near the
high rigidity layer. If the crack moves toward a lower rigigiayer < 1) the
opposite may happen (more than one dislocation may close &tattom for each
new dislocation opening at the top).

2.3.3 An energetic criterion for propagation

We calculate the energy release during propagation as tieeesice between the
strain energy and the gravitational energy in two conseewibn gurations. Prop-
agation is allowed if the energy release exceeds a spe@dattre energy thresh-
old (i.e. the energy required to fracture the new surface).

The strain energy per unit length alogg corresponding to a fracture with
lengthL = N | (Aki & Richards, 1980, p. 55-56) is:

X
2

W(L) = (¢ o+ 7o) (2.32)

At the next iteration, we add a dislocation element of lerdg#h the top of the
fracture. The strain energy will be:

K+l
W(L+= 0o g (2.33)

i=1

where primes indicate terms computed at equilibrium of tbe Iwon guration
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(with N + 1 dislocation elements). The speci c strain energy releaseW =
[W(L) W(L + I)]=l, which is positive if the strain energy decreases. Note that
in a homogeneous unbounded medium, in absence of exteress sif tectonic
origin, a uid- lled fracture, with the condition of vanisimg stress intensity factor

at the bottom, propagates maintaining its length and shimgkeed, in this case,
we obtain, from our model:

B°=0 and =14 ,; M= M, for i 2

Thus,W(L) = W(L +|) and W = 0, so that the crack would not propagate
spontaneously if only the strain energy were considereds 3iows the need for
considering also the gravitational energy release. Howéwbe hosting medium
is layered, with a discontinuity in the elastic parametars,obtain W > O if
the propagation is toward the lower rigidity layer andvV < 0if the propagation
is towards the higher rigidity.

On the contrary, the release of gravitational energy is gdagositive if the
uid- lled fracture propagates upward and the density oktitrusion is lower
than the density of the hosting medium. In terms of the gygwittential (which
is de ned up to a constant term), the upward propagation afxadensity intru-
sion within a higher density medium is equivalent to the upln@opagation of
a negative mass. For a fracture with length= N | the gravitational energy,
calculated up to an arbitrary constdg is:

X
G(L)=K+g (g z) (2.34)
i=1
where = r, g is the gravity acceleratior, 4 is the volume (per
unit length) of thei! dislocation element (that hosts uid instead of the elastic
medium) and z is the difference between the bottom of the cragkand the
depthz; of the centre of thé" dislocation element (see Fig. 2.5):

Z = = (sin j 1+sin ;)
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with ; the dip angle of th¢" dislocation element and, conventionally chosen
equal to zero, so thain  =0.

At the next iteration we add a dislocation element of leng#t the top of the
fracture. The gravity potential is then:

GL+1)=K%+g ° | 0° z (2.35)

where %= 9 .. Again, primes indicate terms computed at the equilibrium
of the new con guration.

Note that the constaiit °in the (2.35) in not necessary equalko(in eq. 2.34):

in particularK = K %only if the total volume per unit length of the dikéis equal

to the new volumé/°(with V andV according to eq. 2.25). In this case we have
also = % De ning the speci ¢ gravitational energy release (pogitif the
energy decreases) asc =[G(L) G(L + I)]=l we simply obtain:

D(+1
G=g¢ z o

i=1
In general, ifV°8& V, we have to consider two contributions in order to re-write
eg. (2.35) up to the same constant of the (2.34): (i) the tanan the density of
the intrusion; (ii) the redistribution of mass in the howsmcks due to the volume
change in the dike. The rst contribution was already intwodd by considering
the new density °de ned by eq. (2.22). The second contribution should con-
sider variations in the density of the host rocks. Rigorpwst should calculate
the deformation eld generated by the dike in order to conepuais a function of
the coordinate$x; z), the deviation (with respect to the previous con guration)
in the density of the host gocks. By integration of the “déethdensity led” we
should obtainaterrk = g z[ (x;z) 4x;z)] dxdz that allows us to write
KOo= K + k.
An approximation that simplify the calculation &f can be introduced by the
following consideration. If we do not consider this tekrand simply assume
K = K9 we introduce an error in G corresponding to the loose of a mass
equal to the volume variation of the dikevV = V  V9with the density of the
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rocks . A good estimation ok can be obtained consideringn as uniforming
re-distributed around the dike. With this approximationeea write:

X+l
k: g r I —b1 ZI
i=1
with
—tp 1 D(+l
TG

now we can write the eq. (2.35) with®°= K + k:

X1 X+
GL+h)=K+ 9 I 0° z +g., | "Bz (2.36)
i=1 i=1
and we obtain the speci c gravitational energy releas&,=[G(L) G(L+1)]=l,
using eq. (2.36) and (2.34):

G=g Z ' M A (2.37)

In the previous sections we have never considered densigyitey in the host
rocks. The introduction of density strati cation in the rhamatical model do not
change any theoretical consideration developed since mé@gsithe introduction
of a density ;, dependent from the dep#h The presence of an interface between
layers with different densities introduce a ternG;j,; in the calculation of the
speci ¢ gravitational energy release due to the displagdroéthe interface. This
contribute can be calculated as:
Z .,
Gnt= 120 [ux;z=0) uyx;z=0)]dx (2.38)
1

where ; ;isthe difference between the density of the lower and ugparire-
spectivelyu(x; z = 0) is the displacement at the interface and the prime indicates
again terms calculated at the equilibrium of the new conajion. The minus
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inside the integral is due to the choiceméxis in downward direction. Equation
2.38 can be easily discretised in order to be computed in ooranical code.
Now we can generalise eq. 2.37 for density layering addiegehm G;,; due
to the interface displacement and writing and , as functions of:

Xt e Gint
G=g z (o H “@ 9° (2 b + i (2.39)

i=1

The speci c total energy release (per unit advancementetthck tip) is the
sum of the two contributions W and G:

E= W+ G (2.40)

As said at the beginning of this section, propagation isvadld if this energy
exceeds a speci ¢ fracture energy threshold per unit lemgithg. This threshold
E+ can be estimated as (Dahm, 2000b):

2l

ET:KC 2

(2.41)

whereK . is the fracture toughness. Elastic-brittle materialsdwithe relation:

Ke=2 T T+ ) (2.42)

(see Grif th, 1920; Menand & Tait, 2002) so that:
Er =21 ) s (2.43)

where g is termed “speci ¢ surface fracture energy” which depend/@n the
composition and temperature of the elastic solid.

2.3.4 Direction of propagation

In order to choose the direction of fracture propagationpgen a test dislocation
element in different directions and calculate the enerdgase for each of these
con gurations (see Fig. 2.5). We choose the direction thakimises the energy
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release and allow the propagation in this direction onhhé energy release ex-
ceeds the fracture energy threshold (as discussed in th@pseparagraph). If

n Is the dip angle of the last dislocation element at the tophefdrack, we try
5 different directions of propagation by the opening of 4 tkslocation with dip
angle of:

N+t =(n 2 ) (N 7 v (n*+2 ) (nt2)

where is choseninthe range {2 ;5 ], depending on the numbir of elements
constituting the crack (usually is in the range ofi0  80elements), in order to
obtain a stable path for the crack propagation.
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Chapter 3
Numerical results

In order to isolate the in uence of the elastic discontiguwi the path followed
by the crack, we show in section 3.1 results obtained withonbducing any
external (tectonic) stress or density strati cation in thesting rocks and show
our mathematical results for a vanishing energy threshGI®ISE 0 - 1 and 2).
Dikes start to propagate far enough from the transition st ithtially they do
not suffer the presence of the discontinuity. We set modedmaters to typical
sub-crustal values (see Table 3.1). In section 3.2 we shsultseobtained with
density and/or rigidity strati cation (CASE 3 - 4 and 5). lhis cases we set the
mathematical model to three signi cant geological con gtion (see Table 3.3).
In section 3.3 we introduce in the housing medium a weak serd the interface
separating different rocks (CASE 6 - 7 and 8).

During propagation we conser#, = Vy ¢ that represents a mass-per unit
length in our 2D model. The output of the mathematical mod&¥iges: (i) crack
propagation path; (ii) crack shape, (iii) stress changelsdasplacements induced
in the medium, (iv) energy release per unit lengtheningrdupropagation.

3.1 Rigidity strati cation

Before showing the results obtained for the transition framstiff to a compli-
ant medium (CASE 1) and the inverse con guration (CASE 2),asesider the
simplest possible con guration: a tilted dike propagatinga homogeneous un-

31
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o = 2600 kg/m3 Vo=3 10 S km? K; =10 GPa
. = 3300 kg/m® | 1.5 30 GPa =0:25

Table 3.1: Parameters used in CASE 0, 1, &, Vo andK; are the reference density,
volume (per unit length) and Bulk modulus of the uid intrag; ,, and are the
density, rigidity and Poisson ratio of the host rock.

bounded medium under the effect of gravity (CASE 0).

In all the cases we set the parameters of the mathematicatlnmdhe values
reported in Table 3.1. The results for CASE 1, 2, and 3 are sarsed in Table
3.2.

3.1.1 CASE 0 (Homogeneous Medium)

We show in Fig. 3.1 the output of the model for CASE 0: the patloived by
the dike, its shape (Fig. 3.1-a) and the speci c energy sdd&ig. 3.1-b). In this
case we choose a uniform rigidity= 30 GPa and an initial length for the dike of
2:70km with the other parameters set according to Table 3.1. Natieve impose
an initial length for the fracture that is found to be lessrtha (the reference
length providing vanishing overpressure at the bottomdrgtie assigned volume
Vo). This choice implies that the initial volume comes out toléss than the
reference volumé&/, and, as a consequence, we have a very high initial positive
contribution Pk to the pressure P(z) (see eq. 2.23 and Fig. 2.4-b). Such an
internal pressure provides a quasi-elliptical initial gadsee Fig. 3.1-al), that in
general will be far from the characteristic tear-drop shabece the contribution

Px is very high with respect to the buoyancy terms. In this @&hition guration,
the stress intensity factors at both tips of the dike aretpesiand this should
provide crack extension in both directions. We allow cractvwgh only at the
upper tip but this assumption is inessential in a homogemeonite medium if
the lengthening of the dike is straight (as may be checkedSégpiori’). The term

Px becomes quickly smaller during crack growth, sivcencreases, so that the
contribution of buoyancy terms to the stress drop becomesirtnt. In Figure
3.1-a2, the length i8:96km and the drop-shape is not fully attained, yet. The nal
characteristic tear-drop shape has a length:®8 km (Figure 3.1-a3 and 3.1-a4)
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Figure 3.1: Case 0: growth and propagation ofA& tilted uid- lled fracture in a
homogeneous elastic medium. Panels a(1-4): energetjpadferred path (dashed line),
shape of the dike (opening exaggerated by a fats®Q) and tensile stress induced in
the medium, normal to the dike plane. Panel b: total speanergy release per unit of
propagation and its contributionsW (elastic deformation energy) ands (gravitational
energy) plotted as functions of tBecoordinate of dike's upper tip. We show the shape of
the dike at its initial lengthl(i, = 0:8 km), at its reference length. ¢ = 1:22 km) and at

its nal length (L, = 1:52 km).
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and remains constant (in the homogeneous case we are aomg)jd#uring the
subsequent propagation, with positivé and vanishing W (see Figure 3.1-b).
The path followed by the crack is a straight line: this bebavican be easily
and intuitively understood at the beginning of the growtlagd In fact, since the
deformation energy releaseéW dominates with respect to the gravitational term
G (see Figure 3.1-b), we expect the opening of the new distotat the upper
tip in the same direction of the crack's dip angle, in ordeopimise the mutual
interaction between the dislocation elements (or maxittisaensile stress acting
on each of them), which drives the opening of the crack.
When the contribution of the gravitational energys becomes greater and domi-
nates in driving the propagation, it might be expected thatrack should deviate
toward the vertical direction, in order to open the new digkion in a higher point
and optimise the gravity potential drop. Instead, even icensg only the grav-
itational energy, the path chosen results to be rectiliadang dip. This can be
understood considering that the gravitational energyasadas larger if more mass
is displaced to shallower depth. Owing to mutual interacmong elementary
dislocations, crack opening (and mass shift) is maximunrédaotilinear fracture
lengthening while a deviation toward the vertical would\pde less mass shifted
to slightly shallower depth. Actual computation shows ttieg maximum total
energy release, in a homogeneous medium, is obtained iotimef case.

3.1.2 CASE1

In this case the rigidity of the lower elastic half space is= 30 GPa while
the rigidity of the upper half space is;, < ;. We de ne as rigidity contrast
r = ,= ; and show the results of our simulations varying the rigidiontrast
according to the values= f0:8; 0:6; 0:4; 0:2; 0.05g.

The typical rigidity contrasts that we can encounter in raltoases can reach
a ratio of an order of magnitude in case of contact betweearsagf basaltic
rocks ( ' 30GPa) and sandstones( 3 GPa). The same order for the rigidity
ratio is obtained considering a transition from basalt tib ou pyroclastic sedi-
ments. A rigidity ratio between 0.5-0.3 can be observedabtiundary between
granitic crust and sandstones. Lower contrasts are typicdérred at the Moho,
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Figure 3.2: CASE 1: propagation of 45 dipping, uid- lled fracture, in a layered
elastic medium. Panel (a): energetically preferred pathiaitial and nal shape of the
dike (opening exaggerated by a fackf)Q) for different rigidity contrasts. In all these
simulations we used an initial number of dislocation eletaéh = 71 and a test angle
=2 . Panels (bl) — (b3): energetically preferred path (dasimeg, Ishape of the dike
(exaggerated by a factdb0) and normal stress induced in the mediumrfer 0:2. Panel
(b4): diagram of the speci c total energy release, plottedianctions of the-coordinate

of the top of the dike.
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in which the purely elastic ratio can reach value$.5. In the case of the Moho,
an important role could be played by the effective rigidijt by the dike, due to
viscoelastic properties of the mantle (Eissa & Kazi, 1988).

The initial crack length is chosen equal to the “equilibrilength” of prop-
agation, obtained when the stress intensity factor vasistieéhe lower tip (as
already discussed for CASE 0).

In Figure 3.2-a we show the path of the crack and its initial aval shape for
different rigidity contrasts. The most interesting featwonsists in a change of
the direction of propagation near the boundary separatiifeyent rigidities. The
energetically favourite path provides a sort of refractammgle due to the in u-
ence of the elastic discontinuity. In particular, passimgT a stiff to a compliant
medium, this model shows a greater deviation toward thacatrdirection ifr
is lower. Note that the dike in ates and shortens considigralier crossing the
interface.

In Figure 3.2-b we zoom on a particular con guratian<£ 0:2). We highlight
changes in the shape of the dike approaching and crossihgtimelary separating
a stiff ( ; = 30 GPa) from a compliant medium { = 6 GPa). We can observe
also the stress change induced in the medium by the dike @&y.panels bl -
b2 - b3): in particular we can notice how the boundary is aédanitially by a
tensile stress and then by a compressive stress concegtuatder the transition
boundary. We plotted the normal stress in the dike referé&aceen; s (when the
dislocation surface is not straight we consider the avedygeas the direction of
thes axis).

In Figure 3.2, panel (b4), we show the specic energy releasthe case
r = 0:2: that will help us in interpreting the results obtained fbe tenerget-
ically preferred path. The deviation towards the vertigaéction is well under-
standable considering that: (i) the elastic deformatiargyndecreases (thenW
increases) approaching a compliant medium and, as a cassegjla deviation in
the direction of a shorter path joining the crack to the caargl half space is
preferred; (ii) the presence of a compliant medium, favdliesopening of the up-
per dislocation elements, very close to the boundary tti@nsia greater opening
of the uppermost dislocations implies an upper translatibthe crack's centre
of mass with higher release of gravitational energy. Weeatal the two energy
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Figure 3.3: CASE 1: speci c total energy releaseE, for different rigidity contrasts,
plotted as functions of the-coordinate of the top of the dike. Vertical dashed linesknar
the position of the upper tip when the bottom tip crosseslerface.
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terms W and G separately. In this case we can immediately observe that the
deformation energy release is almost null unless the dik®e to the transition
surface and its contribution is almost an order of magnitieds than the gravi-
tational contribution. The gravitational energy is donmihen driving the path of
propagation across the elastic discontinuity, but it delgestrongly on the elastic
properties of the medium since, close to the boundary, tkeblume and shape
change (in uencing the overpressure througPx and displacing the centre of
mass). Even if W G, the elastic deformation contribution is not negli-
gible: very close to a discontinuity in the elastic parame(especially for low
dip angles, low density contrast or other particular cdndg, see also CASE 2)
the differences of gravitational energy, between the gnestpase obtained for
different directions of propagation, are of the same ordetha elastic deforma-
tion differences and the elastic contribution becomes ntapo for the direction
of propagation.

In Figure 3.3 we show the specic energy releasé = W + G asa
function of the vertical coordinate of the upper tip of thé&edi It is interesting
to notice (i) the constant rate of energy release during treght propagation
(far from the elastic discontinuity); (ii) the sharp peakueh higher for lowerr)
when the crack approaches the boundary of the compliantumediii) the higher
level of energy release until even the bottom tip of the criaak crossed the in-
terface. These numerical results may help explaining @dtlqualitatively) the
observations of velocity variations in analogue models agee with theoreti-
cal models studying the velocity of uid- lled fractures ihomogeneous media,
where the internal uid dynamics is considered: indeed, @astant energy release
rate means a constant velocity considering a constantwssdissipation during
the motion (consistent with our results far from the eladiscontinuity); the peak
in energy release means a sharp acceleration (the higheyyersdease is avail-
able to increase the kinetic energy of the dike lling uidjat is consistent with
the observation of uid- lled fractures in layered gelat{Rivalta et al., 2005, Fig.
4).
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Figure 3.4:CASE 1b: propagation of 4 dipping, uid- lled fracture, in a homoge-

neous half space with free surface. Panels (a) - (b) - (c) shevenergetically preferred
path (dashed line), the shape of the dike (exaggerated bgtar B00) and the normal
stress induced by the crack in the elastic medium. Paneti{@yram of the total speci c
energy release per unit of propagation and its contribstiow (elastic deformation en-
ergy) and G (gravitational energy) plotted as functions of theoordinate of the top of
the dike.
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3.1.3 CASE 1b (Free Surface)

Now we consider the propagation of the dike in a homogenealispace with
a rigidity = 30 GPa, bounded by a free surfacear= 0. These results are
obtained setting model parameters as in CASE 1, apart fromO (r = 0).

In Figure 3.4 we show in panels (a) - (b) - (c) the path of thekrés shape
and the stress induced in the elastic medium. The path felliduy the crack is a
straight line that ends with a deviation toward the verttiegction, affecting only
the uppermost dislocation elements (hardly appreciabiieangure). In fact, this
deviation, as in CASE 1, starts very close to the free surfexcis simulation we
have a dike o#:95km length and we obtain a deviation frof® to 60 for the
dip angle, concentrated mostly in the shallow&3®m of propagation (fronb500
to 200m depth the dip angle changes only frd® to 48 ). On the contrary, the
dike length is in uenced by the free surface even at deptlis@tame order of the
dike length: at the beginning of this simulatioh@0 km depth) the length of the
dike is reduced by % in with respect to the length in an unbounded meditr;
km depth it is shorter b$%and att50m by 10% The nal length obtained in the
simulation (a0 m depth) i25%less than the length obtained in a homogeneous
unbounded medium. In the last panel of Figure 3.4 we show taatgtional
and deformation energy contributions to the total enertgase: even in the half-
space the deformation energy release does not vanish (@sstid CASE 0), it is
always much smaller than the gravitational contributiogai, it is evident that
the gravitational contribution increases signi cantlyan¢he surface because the
elastic response of the medium yields an increasing craekiog (and decreas-
ing length) so that the centre of mass of the intrusion isldegml upward more
than the upper tip.

The higher energy release close to the free surface explaénacceleration ob-
served in gelatin experiments (Rivalta & Dahm, 2006), adew to the arguments
given at the end of the previous section.

3.1.4 CASE?2

In CASE 2 the rigidity of the upper medium is, = 30 GPa. In this case we
shall consider numerical values of the rigidity contnast f 1:25; 166; 25; 5; 2@
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Figure 3.5: CASE 2: propagation of 80 dipping, uid- lled fracture, in a layered
elastic media. Panel (a): energetically preferred pathiaitidl and nal shape of the
dike (exaggerated by a facté0Q) for different rigidity contrasts. In this simulations
we used an initial number of dislocation elemeNts= 43 71 and a test angle =

(1 2) . Panels (b1) — (b3): energetically preferred path (dasimey), Ishape of the dike
(exaggerated by a factdB0) and normal stress induced in the medium, plotted in the dike
reference frame, far = 2:5. Panel (b4): total speci ¢ energy release plotted as famcti
of thez-coordinate of the top of the dike.
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(reciprocal of CASE 1).

In Figure 3.5-a we show the path of the crack passing from gptiant to a
stiffer medium. In this case we obtain a deviation towarditbazontal direction
that is greater for a higher rigidity contrast; this effeict differences of about
an order magnitude in the rigidities, arrests the propagatihe dike assumes a
lens shape along the interfage£ 5 andr = 20) and the stress intensity factor
vanishes at both dike tips (in agreement with the assumpfiganishing fracture
threshold). In this CASE 2 we observe an opposite (but gredeeection with
respect to CASE 1. This may be understood in the followingngeronce the crack
enters the stiffer medium, the test dislocation opens widede ects toward the
interface; the de ection continues until the whole crack kbeossed (and the crack
gets longer when entering a stiffer medium).

In Figure 3.5, panels (b1) - (b2) - (b3), we highlight changethe shape of
the dike approaching and crossing the boundary separatogaliant ( ; = 12
GPa) from a stiffer medium ¢ = 30 GPa) for whichr = 2:5. While approaching
and entering the stiffer medium, the normal stress inciease to the higher
rigidity. In panel (b4), we show the contributions of gratibnal and deformation
energy to the total energy release: as in the previous cteegsagnitude of the
deformation energy is much lower than the gravitationaltgbuation. Anyway,
as already noted for CASE 1, the gravitational energy istiyrconnected to the
dike shape which is governed by the elastic parameters awhtiations of W
may be important in driving the direction of propagation.eTdheviation toward
the horizontal direction is again understandable consigahat: (i) the elastic
deformation energy increases \\V decreases to negative values) approaching a
stiffer medium; as a consequence, a deviation in the doect the compliant half
space is preferred; (ii) near the rigidity transition, thravgtational energy release
decreases due to the less opening of the crack's head (anmbitisequent less
advancement of the centre of mass) caused by the reactibe efiffer medium.

In Figure 3.6, panels (a) - (b) - (c), we show changes in theelo&the dike
approaching and crossing the boundary separating a camplia= 6 GPa) from
a stiffer medium (, = 30 GPa) for whichr = 5. Approaching and entering into
the stiffer medium the normal stress increases due to theehiggidity. In the

nal con guration, when the dike assumes a lens shape in threzbntal position,
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r in | fn lin (km) | ltn (km) | Nin | N¢q

CASE 1b| 0 |45 |60 1 |4.95 3.75 99 | 75
CASE1 | 0.05]|45 |69 2 | 4.97 1.68 71 | 24
0.2 |45 | 63 2 | 4.97 2.66 71 | 38
0.4 |45 | 59 2 | 4.97 3.43 71 | 49
0.6 |45 |55 2 | 4.97 3.99 71 | 57
0.8 |45 | 49 2 | 4.97 4.55 71 | 65
CASE O 1 |45 |45 2 1270 4.98 45 | 83
CASE2 | 1.25|60 | 58 2 |4.32 4.68 72 | 78
1.66| 60 | 49 2 1391 4.90 71 |89
25 |60 | 20 2 | 3.43 6.30 49 |90
5 |60 |sill 1 |276 6.04 69 | 151
20 | 60 | sill 2 | 1.72 3.24 43 | 81

Table 3.2: Results of the numerical model and initial (assumed) and (namputed)
values of dike parameters.

the stress decreases due to the low internal overpressigain Ave plotted the
normal component of the stress tensor in the dike referenaced. In Figure 3.6
panel (d) we show the energy release as a function of theltwear abscissa (the
path length starting from the upper tip in the initial conmion) normalised to
its value when the crack crosses the transition boundanene crack assumes
a low dip angle, the strain energy becomes dominant in dyithe dike toward its
nal con guration.

In Figure 3.7 we show the total energy release as a functioheotoordinate
of the upper tip. The total energy release decreases shinphjigher rigidity
contrasts. For moderate rigidity contrasts< 1:25; 166; 25) the propagation
continues in the stiffer medium and the energy has a shagp fomimum in cor-
respondence of the interface. The dike stops wh&n= E+, what occurs even if
the threshol&E+ vanishes when =5 andr = 20. If E; > O, dike arrest may oc-
cur, typically close to the interface, for lower rigidity tasts. These results are
con rmed by experimental observations showing that uitled fractures may
stop in proximity of a transition to higher rigidity (Rivatet al., 2005, Fig. 5).
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Figure 3.6: CASE 2: propagation of 80 dipping, uid- lled fracture, in a layered
elastic space with rigidity contrast= 5. Panels (a) - (b) - (c) show the energetically
preferred path (dashed line), the shape of the dike (exatgpeby a factob00) and the
normal stress induced by the crack in the elastic mediumaiep(d) the total speci c en-
ergy release and its contributionsN (elastic deformation energy) ands (gravitational
energy) are plotted as functions of the distance traveljethb upper tip (normalised to
the initial distance from the transition boundary.
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Figure 3.7:CASE 2: speci c total energy release for different valuesigitlity contrasts,
plotted as functions of the-coordinate of the top of the dike. Vertical dashed linesknar
the position of the upper tip when the bottom tip crossesriterface.
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3.1.5 Coulomb failure function and principal stresses clos to
an elastic discontinuity

An important aspect associated with dikes ascending inrilst s the seismicity
due to the stress perturbation induced in the hosting metiythe dike's upper
tip. This seismicity allows to localise a dike during the@sicand informs about
its velocity and direction of propagation. Here | plot theu@onb failure function
(Cff) and calculate the axis relative to the maximum and munn eigenvalues of
the stress eld induced by a dike in an elastic medium withgadity discontinuity.
For each of the con guration proposed in section 3.1 | shosults for a vertical
(Fig. 3.8) and an inclined dike (Fig. 3.9). | used the simplesnulation for the
Cff, de ned as:

Cff =) xJ+f «

wheref is the friction coef cient and | took = 0:7.

| plot the maximum Cff calculated on optimally oriented fisubn planes perpen-

dicular to the (x,z). | show also the maximum tensile (greaed and circles)

and compressive (blue lines and circles) stress direckoom the Anderson the-

ory of faulting, the dip angle of an optimally oriented fagtn which the Cff

is maximum) deviates from the direction of the minimum stregyenvector of
farctan(f 1).

In Fig. 3.8 a vertical dike of 5 km length opea¥in a homogeneous medium;
b) in a half-space at 1 km deptle) in a medium with rigidity of 30 GPa at a
distance of 1 km to the boundary separating a medium witlitigof 12 GPad)
the same as c) with inverse rigidities. Note that in Fig. 18 external stress was
considered in the medium, the Cff refers only to the stredd generated by the
dike. In the homogeneous medium (Fig. 3.8-a) the maximumpcessive stress
over the upper tip of the dike is perpendicular to the (x,angl. In fact on the dike
surface X = 0) = 2 so that the minimum stress component resuj{s=

( xx* 2zz). Note that on this plane | decided to plot the maximum eigetoreas

horizontal, but this is an arbitrary choice: the maximumgsa& on every direction
in the plane (x,z). Near the plame= 0 we have that ., and ,, are both positive
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Figure 3.8:Maximum Coulomb failure function on optimally oriented feuon planes
perpendicular to the (x,z) for a vertical dike of 5 km lengibeaing in a homogeneous
medium (a), in a half-space (b), in a layered medium (d) ahdHigenvectors relative to
the maximum (green) and minimum (blue) eigenvalue of thesstreld due to the dike
opening are plotted as lines if they are on the (x,z) planéroles if they are perpendicular
to (x,z).



48 CHAPTER 3. NUMERICAL RESULTS

Figure 3.9:Maximum Coulomb failure function on optimally oriented feuon planes
perpendicular to the (x,z) for a 48lipping dike of 5 km length opening in a homogeneous
medium (a), in a half-space (b), in a layered medium (d) ahdHigenvectors relative to
the maximum (green) and minimum (blue) eigenvalue of thesstreld due to the dike
opening are plotted as lines if they are on the (x,z) planéroles if they are perpendicular
to (x,z).
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and similar, so that again,, results the minimum eigenvalue. It is interesting to
notice that the uncertainty in the direction of maximum tenstress is removed
by the asymmetry introduced by free surface or the interfaith a stiffer or
compliant medium. In Fig. 3.8-b and 3.8-c, on the plarne 0, the horizontal is
effectively the direction of maximum tensile stress, intfdie presence of the free
surface and of the compliant upper layer respectively, ntla&e,, component of
the stress tensor lower thag, (the effective rigidity inz direction is lower than

in X direction). The opposite happens in the forth con gurat{fig. 3.8-d) were
the effective rigidity inz direction is higher than i direction, consequently the
maximum eigenvalue is,, and the tensile eigenvector is vertical. Looking at the
Cff values, it is clear that faulting is favoured by the pmese of a free surface
or of a compliant upper layer. In this cases we expect sheatures on planes
inclined of an angle %arctan(f (¢ 60 forf = 0:7) with respect to the
vertical in the region where the Cff positive values are kigtapproximately a
line dipping at 40 — 50 from the surface to the dike upper tip).

In Fig. 3.9 a 45 dipping dike of 5 km length opens in the same con gurations
described above. Again an uncertainty for the directiorhef ihaximum tensile
axis is found in the homogeneous medium (Fig. 3.9-a) on tke pliane. Again
| choose arbitrarily to plot the maximum eigenvectors on ¢heck surface per-
pendicular to the dipping direction of the dike. In the otbases the uncertainty
is removed by the asymmetry introduced by free surface oirtegface with a
stiffer or compliant medium. In Fig. 3.9-b and Fig. 3.9-cnsgaresting to notice
that the direction of maximum tensile stress, near the tiihefdike, does not re-
sults exactly perpendicular to the crack plane (as for acadrtlike) but tends to
be parallel to the free surface (or interface). Moving awaynT the dike tip, on
the crack plane, the maximum tensile stress becomes catypleirizontal and
continues its rotation overpassing thelirection.

The orientation of the maximum eigenvector of the stresd lehs a fundamental
relevance for dike propagation: it is ascertained that fhecton of propagation
of a dike in an external stress led tends to progressivelyiate to the perpen-
dicular direction with respect to the maximum tensile gresee Watanabe et al.,
2002). This rule seems to be applicable also to the stressgeherated by the
own dike. In fact, considering the behaviour of the maximugeevector on the
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dike plane shown in Fig. 3.9-b and 3.9-c (and described gkarve considering
that the dike path, in presence of an external stress el@&aigto the perpendic-
ular to the maximum tensile stress, we expect a deviationdweértical direction
for dikes that propagate to the free-surface or to the iaterfwith a compliant
medium (as predicted by the numerical results shown in the%&.2 and 3.1.3).
Moreover the opposite behaviour of the maximum tensilesstie shown in Fig.
3.9-d, where the upper layer is more rigid and the tensilemigctor suggests the
horizontal as favourite direction of propagation (as dest@ted in sec. 3.1.4).
Again, looking at the Cff values, it appears clear that tresspnce of the free sur-
face or of the compliant upper layer favours fracturing & Host medium. In this
cases we expect shear fractures on planes inclined of aa a0 with respect
to the compressive eigenvectors. In the red region of Cffyingpfrom the tip
of the dike to the free surface (or interface), compressie dip from 45 to

90 (approximately on a line dipping at 36 40 from the dike upper tip to the
surface).

3.2 Density and rigidity strati cation

In this section we show results obtained considering a nmeduth density and
rigidity layering.

We consider three different con gurations: we start witle ttransition from a
higher to a lower density layer, without introducing anyidity transition in or-
der to isolate the effect of the density layering (CASE 3grthwe consider the
same density con guration adding a rigidity transitionrit@a stiff to a compliant
medium (CASE 4). Finally we show the opposite con guratioithatransition
from low to higher densities coupled with a rigidity tramsit from a compliant to
a stiffer medium (CASE 5).

For each of the following cases we set the parameters of tlibametical
model to the values reported in Table 3.3. The results for EARS4, and 5 are
summarised in Table 3.4.
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Figure 3.10:CASE 3: propagation of 45 dipping, uid- lled fracture, in an elastic
media with a density strati cation of the typg > , > o (where g is the density of
magma and, and , are the densities of lower and upper medium respectivelghel’
(a), (b) and (c): energetically preferred path (dashed lisieape of the dike (exaggerated
by a factor500) and modulus of the displacement eld. Panel (d): total spesnergy
release plotted as function of thecoordinate of the top of the dike. The blue horizontal
dashed line represents the energy threshold for propagatio



52 CHAPTER 3. NUMERICAL RESULTS

Figure 3.11:CASE 3: propagation of 45 dipping, uid- lled fracture, in an elastic
medium with a density strati cation of the typa > o > ». Panels (a), (b) and (c):
energetically preferred path (dashed line), shape of tke @xaggerated by a factop0)
and modulus of the displacement eld. Panel (d): total speenergy release plotted
as function of thez-coordinate of the top of the dike. The blue horizontal ddsliee
represents the energy threshold for propagation.
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1 (ko) | o (kg/n®) | o (kg/nT) | 41 (GPa)| » (GPa)
CASE 3| 3000 2800 2600 30 30
3000 2400 2600 30 30
CASE 4| 3000 2800 2600 30 12
3000 2400 2600 30 12
CASE5| 2800 3000 2600 12 30

Table 3.3: Parameters used in CASE 3, 4, 5, is the reference density of the uid
intrusion, 1, 2, 1 and » are the densities and rigidities of the lower and upper kyer
respectively. In this cases we use a Poisson ratid :25 for the host rock. We consider
a Bulk moduluK s = 10 GPa and a volume (per unit lengtt) = 3 10 2 kn? for the
intrusion.

3.21 CASE3

The path followed by the dike, its shape, the displacemelat generated in the
medium are plotted in Fig. 3.10 and 3.11, panels a-b-c. Tkeispenergy re-
lease in Fig. 3.10 and 3.11 panel d. The rigidity is= 30 GPa and the other
parameters of the mathematical model are set accordingaie Ba3.

In this case we consider two different density con guraso(i) we set the density
of the upper medium lower than the density of the layer belotgbeater than the
density of the intrusion:; > , > ( (shownin Fig. 3.10); (ii) we set the density
of the upper medium lower of both: the density of the layepbehnd the density
of the intrusion ; > o > , (shown in Fig. 3.11). In the last con guration
magma is not buoyant with respect to the upper medium andikieestbps cross-
ing the density transition.

Our model, in these con gurations, shows straight propagatsuggesting that
even if the contribution of elastic energy is generally derahan that of grav-
itational, a change in host rock density along the dike'sipatnot suf cient to
change its direction of propagation. As discussed in se@id.1, there is a strong
interaction between elasticity and gravitational eneidye favourite direction of
propagation results very often simply the direction of nmaxxm opening of the
last elements, that in absence of external stress or elastiirogeneities, results
the straight propagation.

In Figure 3.10, where the density of the upper medium wascsat liigher
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value than the density of the intrusion, the dike contindesgropagation also
within the upper layer, decreasing its opening due to thestqwessure gradient
and increasing its length in order to conserve the mass ohmag

In Figure 3.11, where the density of the upper medium wasosatlbower value
than the density of the intrusion, the dike arrests whensingsthe interface.
Here we set the speci c fracture energy threshéld (blue horizontal dashed
line in panel d) to a constant value bMPam (according to eq. 2.41 and 2.42
with a fracture toughness . = 8:5 MPakm'™?). Dike arrests when the speci ¢
total energy gained during the propagation becomes loveertte fracture energy
threshold. Note that the contribution of elastic energyanee essential for the
last kilometre of propagation, where the gravitationaltabation became lower
than the energy threshold for propagation (green dashedlna blue horizontal
dashed line in Fig. 3.11 panel d). At the arrest of the dikediness intensity
factor at the top is at the equilibrium with critical streagainsity factor of the host
rock.

3.2.2 CASEA4

We show in Fig. 3.12 and 3.13 the output of the model for CASEh& path
followed by the dike, its shape, the displacement eld gatedt in the medium
(panels a-b-c) and the speci c energy release (panel dhithdase we choose a
rigidity ratior = 0:4with ; =30 GPaand , =12 GPa.

Also in this case we consider the same two different densitygurations of
CASE 3: 1> ,> g, (showninFig. 3.12) and; > o > , (shown in Fig.
3.13). The densities employed for these simulations atedis table 3.3. Again
in the last con guration magma is not buoyant with respedh® upper medium
and the dike stops when crossing the density transition.

In these con gurations, the results of the mathematical eh@thow a path fol-
lowed by the dike that deviates from the straight propagetmthe vertical di-
rection. The two different density con gurations do not olga signi cantly the
path of the dike. In Fig. 3.12 we show also (red dashed line)ptith relative to
a medium with homogeneous densitg (= ;) with the same rigidity contrast
(r =0:4).
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Figure 3.12:CASE 4: propagation of 45 dipping, uid- lled fracture, in a layered
elastic media with a density strati cation of the typge > , > o and rigidity strati -
cation 1 > . Panels (a), (b) and (c): energetically preferred pathciblashed line),
shape of the dike (exaggerated by a fa&08) and modulus of the displacement eld.
The red dashed line represents the energetically prefgaédfor , = 1. Panel (d):
total speci c energy release plotted as function of zheoordinate of the top of the dike.
The blue horizontal dashed line represents the energytihieéor propagation.
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Figure 3.13:CASE 4: propagation of 45 dipping, uid- lled fracture, in an elastic
media with a density strati cation of the typa > o > 2 and rigidity strati cation

1> 2. Panels (a), (b) and (c): energetically preferred pathHedsine), shape of the
dike (exaggerated by a facte®0) and modulus of the displacement eld. Panel (d): total
speci ¢ energy release plotted as function of theoordinate of the top of the dike. The
blue horizontal dashed line represents the energy thrégbopropagation.
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In Figure 3.12, where the density of the upper medium waosevalue larger
than the density of the intrusion, the dike continues th@agation also in the up-
per layer changing its opening due to the lower pressureigmadnd the lower
rigidity. This two contributions act in the opposite diriect: a lower density leads
to lower overpressure and decreases the dike opening; a tayidity increases
the opening at the same overpressure. The result is a shayteh11%in the
dike length.

In Figure 3.13, where the density of the upper medium wasosatlower value
then the density of the intrusion, the dike arrests whenstnggthe interface. Note
that also in this case, as the second con guration of CASE& contribution of
elastic energy became essential for the propagation iragi&kilometre. Here the
gravitational contribution became lower than the energgshold and propaga-
tion is provided by the contribution of the elastic energyydsee Fig. 3.13 panel
d). We set again the speci c fracture energy threshojd(blue horizontal dashed
line in panel d) tol MPam (fracture toughnesk . = 8:5 MPakm'2). The
dike arrests when the speci c total energy gained duringptfegagation becomes
lower than the fracture energy threshold.

3.2.3 CASES5S

We show in Fig. 3.14 the output of the model for CASE 5: the gallowed by
the dike, its shape, the displacement eld generated in tediom (panels a-b-c)
and the speci c energy release (panel d). In this case waetitive rigidity ratio
with respect to the CASE 4:=2:5with ; =12 GPaand , =30 GPa.

Here we consider only one density con guration; > 1; this con guration
certainly does not represent a typical geophysical scermri we can refer our
setting to a situation in which a rigid layer intrudes hontly into a homo-
geneous matrix or (especially in volcanic areas) in whiatireentary rocks are
deposited over a layer of tuffs or pyroclastic sedimentse dansities employed
for these simulations are listed in table 3.3. In Fig. 3.14sWwew also (red dashed
line) the path relative to a medium with homogeneous dergsity= ; = 2800
kg/m®) and the same rigidity contrast € 2:5).

In this con guration, the results of the mathematical moslew that the dike fol-
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Figure 3.14:CASE 5: propagation of 80 dipping, uid- lled fracture, in an elastic
media with a density strati cation of the type > 1 > ¢ and rigidity strati cation

1 < 2. Panels (a), (b) and (c): energetically preferred pathcfbtiashed line), shape
of the dike (exaggerated by a facto®0) and modulus of the displacement eld. The
red dashed line represents the energetically preferrddfpat , = 1. Panel (d): total
speci ¢ energy release plotted as function of theoordinate of the top of the dike. The
blue horizontal dashed line represents the energy thrégbopropagation.
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r (kg/mg) in fn Iin (km) Ifn (km) Nin an

CASE 3| 1 | 200 45 | 45 1 |6.00 7.60 75 | 95
600() 45 | 45 1 |6.00 7.26 100 | 121

CASE 4] 0.4 ] 200 45 | 59 1 |5.95 5.30 119 106
600() 45 | 55 1 |5.95 6.15 119 123

CASE 5| 2.5] -200 60 | 18 1 [5.22 7.02 87 | 117

Table 3.4: Results of the numerical model and initial (assumed) and (namputed)
values of dike parameters. = 1  , is the difference between the density of the rst
and second layer respectively. The details of densitiesrigidities employed in each
case are listed in table 3.3. The astekiskindicates a density con guration in which the
magma is not buoyant in the upper medium¥ o> »2), in this cases the dike arrests
crossing the interface.

lows a path that deviates from the straight propagationadtrizontal direction.
In this con guration the pressure gradient in upper medignhigher due to
the grater density. Although the higher rigidity decreaesopening of the dike,
moreover the de ection to the horizontal due to the rigiditgnsition decreases
the pressure pro le. The result is a lengthening36£6in the dike length.
We set again the speci c fracture energy thresHgid(blue horizontal dashed line
in panel d) tol MPam (fracture toughness . = 8:5 MPakm'™2). This values
was not reached during the propagation so that the dike wesrrested.

3.3 Fracture toughness heterogeneities

In this section we show results obtained considering dik@agation in a medium
made up of 2 half-spaces welded weakly. We reproduce thiguaaation in the
mathematical model by setting the fracture toughness anteeace ¢ = 0) to

a lower value with respect to the fracture toughness of theridgeneous half-
spaces.

We consider three different con gurations: homogeneouslioma with a weak-
interface inz = 0 (CASE 6); then we consider a higher rigidity and more dense
lower medium, below a compliant, less dense upper mediunSEX); nally

we show the opposite con guration with a lower medium witkvldensity and
rigidity and an upper medium with higher rigidity and deggiCASE 8).
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Er (MPam) | ; (kg/m®) | , (kg/mP) | 1 (GPa)| , (GPa)
CASE 6 2.5 3000 3000 30 30
CASE 7 4.2 3000 2800 30 12
CASE 8 0.5 2800 3000 12 30

Table 3.5:Parameters used in CASE 6, 7, 8Et is the difference between the fracture
energy threshold in the layers and at the interface: in thses the fracture toughness of
the media was ever greater than the fracture toughness @®utfeeez = 0; 1, 2, 1
and » are the densities and rigidities of the lower and upper kyespectively. In this
cases we use a reference density= 2600 kg/n? for the uid intrusion, a Bulk modulus
K¢ =10 GPa and a volume (per unit lengig) = 3 10 2 km?. We consider a Poisson
ratio = 0:25 for the host rock.

For each of the following cases we set the parameters of tlitbemetical
model to the values reported in Table 3.5.

3.3.1 CASE®G6

We show in Fig. 3.15 the output of the model for CASE 6: the gallowed by
the dike, its shape, the displacement eld generated in tediom (panels a-b-c)
and the speci c energy release (panel d). In this case weidena homogeneous
medium with a weak surface n= 0.

We set the speci c fracture energy threshé¢ (blue dashed line in panel d) #b
MPam in the medium and th MPam on the surface = 0. The fracture energy
drop make the interface (= 0) the energetically preferred direction of propaga-
tion, in spite of the less ef cient contribution to the toeergy release of both:
gravitational and elastic energy. Here (Fig. 3.15) and mnfthllowing 2 cases
(Fig. 3.16 and 3.17) the black dashed line is the sum of thatgteonal and elas-
tic contributions ( G and W) minus the fracture energy threshol+(). The
dike arrests when the total energy release per unit lengtg€hlack dashed line)
reaches zero. Note that in the last 2 km of the dike path, thegyation along the
interface is allowed only by the contribution of the elasteformation energy.



3.3. FRACTURE TOUGHNESS HETEROGENEITIES 61

Figure 3.15:CASE 6: propagation of 80 dipping, uid- lled fracture, in an elastic
homogeneous medium with a weak surface #10. Panels (a), (b) and (c): energetically
preferred path (dashed line), shape of the dike (exaggtsta facto/500) and modulus
of the displacement eld. Panel (d): total speci ¢ energlesese plotted as function of the
z-coordinate of the top of the dike. The blue dashed line ssprts the energy threshold
for propagation lled by the dike during the propagatidhMPam in the mediumZ > 0
orz < 0) andl MPam at the interfacez(= 0 ).
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Figure 3.16:CASE 7: propagation of 80 dipping, uid- lled fracture, in an elastic
medium, with a weak surface in = 0, made up of 2 homogeneous half-spaces: the
lower with rigidity 1 = 30 GPa and density; = 3000 kg/n? and the upper with
rigidity » = 12 GPa and density> = 2800 kg/n?. Panels (a), (b) and (c): energetically
preferred path (dashed line), shape of the dike (exaggebste facto’500) and modulus

of the displacement eld. Panel (d): total speci ¢ energlease plotted as function of the
z-coordinate of the top of the dike. The blue dashed line sspres the energy threshold
for propagation lled by the dike during the propagatichMPam in the mediumZ > 0

orz < Q) andl MPam at the interfacez(= 0 ).
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3.3.2 CASE7

We show in Fig. 3.16 the output relative to the con guratidrosen in CASE 7.
In this case we consider again a weak surface m 0; the elastic medium is
made up of 2 homogeneous half-spaces: the lower with ngidit= 30 GPa and
density ; = 3000 kg/m? and the upper with rigidity , = 12 GPa and density
» = 2800 kg/m?.
We set the speci ¢ fracture energy threshde (blue dashed line in panel d) to
5:2 MPam in the medium and t& MPam on the surface = 0. Again such a
fracture energy drop along the interface make O the energetically preferred
direction for propagation. Also in this case, as in the pragi the last 2 km of
propagation along the interface, are allowed thank to tiéritution of the elastic
deformation energy.
Note that in this case we need a grater fracture energy droper to obtain dike
propagation along the interface: in fact with this setting # ), in absence of
any fracture toughness discontinuity, we obtained (CASHEd 4) that the total
energy release was maximised by a deviation to the vertidhla dike path.

3.3.3 CASES8

In Fig. 3.17 we show the output for CASE 8. In this case we aBrdhe opposite
con guration with respect to CASE 7: lower half-space wittidity ; = 12 GPa
and density ; = 2800 kg/m® and upper half-space with rigidity, = 30 GPa and
density , = 3000 kg/m?. Again we set the weak surfaceirr 0.

The speci c fracture energy threshole; (blue dashed line in panel d) in the
medium is1:5 MPam and1 MPam on the surface = 0. Again we chosen a
fracture energy drop along the interface high enough to naak® the energeti-
cally preferred direction for propagation, in spite of ties$ ef cient contribution
of gravitational and elastic energy release. In this cdeelast kilometre of propa-
gation along the interface, is allowed by the contributibthe elastic deformation
energy: here the gravitational contribution by them setfigt not be able to guar-
antee propagation.

Note that in this case a lower fracture energy drop is neededder to obtain dike
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Figure 3.17.CASE 8: propagation of 80 dipping, uid- lled fracture, in the opposite
con guration of CASE 7: weak surface m=0, 1=12 GPa, 1 = 2800 kg/m?, 2 =

12 GPa, » = 3000 kg/n?. Panels (a), (b) and (c): energetically preferred pathHelds
line), shape of the dike (exaggerated by a fa&@@) and modulus of the displacement
eld. Panel (d): total specic energy release plotted asdtion of thez-coordinate of
the top of the dike. The blue dashed line represents the yetlargshold for propagation
lled by the dike during the propagatior8:5 MPam in the mediumZ > 0 orz < 0) and
0:5 MPam at the interfacez(= 0 ).
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propagation along the interface: in fact with this setting® 1), in absence of
any fracture toughness discontinuity, we obtained (CASB® %) that the total
energy release was maximised by a deviation to the horikontlae dike path.

3.4 Discussion

Some of the results obtained from the numerical models wemgising to us: for
instance, we expected that the dike should deviate signtlggoward the vertical,
even in a homogeneous medium, due to the buoyancy of they Iliid. Instead,
the dike dip remained constant in the numerical models] thiinterface was
reached. This was explained in section 3.1.1 (homogeneedsum) in terms of
the more ef cient upward displacement of the intrusion massectilinear prop-
agation. An experimental check of these results was proMyecomparing our
numerical ndings with results from experiments in gelaséind will be presented
in the next chapter.

Furthermore, the parameter values employed in the matheshatodel need
be discussed. The value assumed for magma dengity much lower than the
value o = (1 T) obtained for thermal expansion of the basaltic rocks
(even a temperature differenceT  10° K provides 100 kg/m? only).
Such small values of provide very low overpressure and very thin dike open-
ing (u 10 2 m) employing deep crust rigidities (30 GPa) and initial
lengthl  10°-10* m. Such a thin dike, in presence of such a high, would
become frozen in a very short time, which may be approxingagstimated as

2] 2
Arku—l‘_l_fo (wherelL is the latent heat,, is the densityk is the thermal con-

ductivity andc, the speci c heat of magma) from Turcotte & Schubert (1982,
Chapter 4). However it is not necessary that magma in the shkeld be much
hotter than the surrounding rocks in order to be uid and tghthan the em-
bedding medium: magma may be uid because it is geochengidéfierent than
the surrounding rocks (which, even in source regions, gre#jly the refractory
residual of the same primitive magma). Water, in partigulawers consider-
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ably the melting temperature. Moreover, at shallow dephgghly vesciculated
magma may easily be lighter th&®00kg/m® with respect to2900kg/m® of
basaltic rocks, without requiring a signicantT. A lower T increases sig-
ni cantly the freezing time t, according to the previous formula. The value
o = 2600 kg/m?, employed in the numerical model, (see Table 3.1) was arbi-
trary chosen within the reasonable range provided by théquie considerations.
Field observations generally show dike thicknesses froma@ibn of 1 m to sev-
eral meters. The initial volume employed in our simulati¢sse Table 3.1) was
chosen in order to provide 1 m opening in a medium with 30 GPa rigidity. The
opening increases up to a factor 10 when the dike enterser sofdium.

3.4.1 Numerical issues for an elementary dislocation closad
across an elastic discontinuity

Here we show and discuss some results relative to an elerpetaed disloca-
tion, with overpressure assigned at its middle point, inxpraty and across an
elastic discontinuity.

As written in section 2.3 for the boundary element crack, Blueger vector of a
single elementary closed dislocation, opening under aesligtress conditions, is
chosen so that the stress due to the dislocation balancgsetexistent stress at
its middle point. The choice to satisfy the equilibrium caiwh for the stresses at
the middle point of the dislocation is justi ed only by thectahat this is the best
choice in order to obtain a Burger vector, for the closedadiation, that approx-
imates well the maximum opening of a crack with the same (emtspre-stress
condition along the crack surface.

That means that, when the pre-stress on a dislocation suiagery far to be
constant, we have no guarantee that the opening, obtaitistysey the equilib-
rium condition in the middle point of the dislocation, wikliepresentative of the
opening of a “real” crack. This is the case we are going toudisc The presence
of an elastic discontinuity generates an asymmetry of tressteld due to the
elementary dislocation, and a discontinuity of #¥xecomponent of the stress ten-
sor along the interface. In this case the stress eld due telamentary closed
dislocation calculated at its middle point could be no m@gresentative of the
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Figure 3.18:Cross section area of a horizontal elementary closed distocas function
of thez coordinate of its middle point in an elastic medium with digy transition in
z = 0. The dislocation length is 1 km and the assigned overpressur MPa.

opening of the dislocation. As a consequence an unreasoBafger vector is
required to balance the forces at the centre of the dislocati

In Fig. 3.18 we show the opening of a horizontal elementaoged disloca-
tion, with assigned constant overpressure, as a functiats af coordinate in a
medium with an elastic discontinuity im = 0. It is evident that the cross sec-
tion of the elementary dislocation should grow monotorycaiile it is moving
upward, since it is feeling a lower effective rigidity. Onetlcontrary we obtain
a relative maximum in the stiffer medium, near to the rigiditansition. This
effect is clearly due to the closeness of the elastic discoity. In fact the dis-
tance at which we observe the anomalous maximum depende ¢entdth of the
dislocation: in Fig. 3.19 we shows the results of the samepsormed with 2
boundary elements cracks with 10 and 100 elements resphctin Fig. 3.19-a
(10 elements crack) the maximum and the distance at whichpéars, are re-
duced of a order of magnitude and in 3.19-b (100 elementkrm@ic2 orders
(resulting unnoticeable in the graph).
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Figure 3.19:Cross section area of a horizontal boundary elements craékration of
thez coordinate of its middle point in an elastic medium with digy transition inz = 0.
Panel a and b refer to a crack made of 10 and 100 elements tigshecT he crack length
is 1 km and the assigned, constant overpressure is 1 MPa.
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Figure 3.20:Cross section area of a tilted elementary closed dislacatofunction of
the dip angle . The dislocation has a tip on the interface 0O that is a rigidity transition
surface. The dislocation length is 1 km and the assignegboessure is 1 MPa.

This effect may introduce an error in the choice of the fauteudirection for the
opening of a single dislocation very close to the rigiditgrsition: in Fig. 3.20
we perform an analogous test xing a tip of the elementangetbdislocation on
the interfacez = 0 and varying the dip angle fro®0 to 90 (see the insertin
Fig. 3.20).

We obtain also in this case an analogous graph, with a relati@ximum for a
dip angle =27:5 . Using a boundary elements crack, or moving the dislocation
away from the discontinuity, this effect progressivelydayuickly) disappears.
The fact that this effect scales with the linear dimensionthef elements of the
crack, makes us con dent that the possible errors introduc@ur model are re-
stricted to a region around the interface with thickness akimum 2 elements of
the boundary elements crack. Increasing the number of eltsneour simulation
we reduce the in uence of this effect and we nd stable pathrsdracks made of
40-50 elements or more.

In Fig. 3.21-a we show the opening of a vertical elementargedl dislocation,
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Figure 3.21:Cross section area of a vertical elementary closed distotats function
of the z coordinate of its middle point in an elastic medium with digy transition in

z = 0. The dislocation length is 1 km and the assigned overpressur MPa. In panel b,
where the dislocation is across the interface (region Illéijcthe dislocation is split in 2
elements in correspondencezof O .



3.4. DISCUSSION 71

Figure 3.22:Cross section area of a vertical boundary elements crackrasién of the
z coordinate of its middle point in an elastic medium with digy transition inz = 0.
Panel a and b refer to a crack made of 10 and 100 elements ti@specT he crack length
is 1 km and the assigned, constant overpressure is 1 MPa.
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Figure 3.23:Cross section area of a vertical boundary elements crackrasién of the

z coordinate of its middle point in an elastic medium with digy transition inz = 0.
Panel a and b refer to a crack made of 10 and 100 elements tigspecT he crack length
is 1 km and the assigned, constant overpressure is 1 MPa, \Hege an element is across
the interface, it is split in two in correspondencezcf O .
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with assigned constant overpressure, as a function of i®mmate in a medium
with an elastic discontinuity im = 0. The graph is divided in 4 region in which
the dislocation is: (1) totally embedded in the lower halése (1 = 30GP a);
(I) across the interface with its middle point in the lowelihspace; (lll) across
the interface with its middle point in the upper half spad¥) totally embedded
in the upper half space §{ = 10GP a). Also in this case we expect that the cross
section of the dislocation grows monotonically approaghamd entering in the
upper compliant medium. On the contrary, we obtain, Figla2that the open-
ing of the elementary dislocation, under constant ovegunescondition, has an
unexpected behaviour in region Il and Ill. In region || we eb& an unreasonable
relative minimum forz = 0:2km (the length of the dislocation is 1 km) with the
cross section of the dislocation that decreases zorn0:5to z = 0:2. In region

[l we obtain a relative maximum far = 0:05and the cross section decreases
fromz= 0:05toz= 0:5. Moreover the graph in Fig. 3.21-a shows a discon-
tinuity in z = 0 that consists in a sudden change in the opening of the disdoca
when its centre oversteps the interface. The discontimuitye opening can be re-
lated to the discontinuity ia = 0 of the ., component of the stress eld. In fact
the compressive stress, induced by an elementary distocatross the interface,
“accumulates” in the stiffer half-space, in proximity okthigidity transition, and
quickly falls down in the compliant half-space. When thexedatary dislocation
is across the transition, the presence of such highly vigriedimpressive stresses
on the dislocation surface makes the middle point of theodaion not the best
location to calculate the Burger vector that satis es thaeikdorium of stresses

In Fig. 3.21-b we present the same case splitting, in coomdpnce ok = 0, the
dislocation which is across the interface, into two eleragntlosed dislocations.
We can appreciate that the discontinuityzire O disappears as the maximum in
the region 1ll. Again we observe a relative minimum in regibiifor z = 0:25)
and in general, for region Il and Ill, the opening of the dtslbon appears to be
underestimated. That is understandable considering thateanentary disloca-
tion always overestimates the cross section of a crack anejion Il and Ill, in
which we use a 2 elements crack, a generic reduction of thes@ection is ex-
pected.

In analogy with the previous case (horizontal dislocatiwe)try to by-pass the
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problems due to the elementary dislocation approximatitnpducing a bound-
ary elements crack. In Fig. 3.22 we show results obtainea fanack built with
10 elements (3.22-a) and 100 elements (3.22-b). As expdutediscontinuity in
the cross section decrease in amplitude but is cyclicafiyoduced each time that
a dislocation element passes the interface.

The undesired effect seems to be conclusively solved usbauadary elements
crack and splitting into two elements the dislocation eatie twhich it is across
the interface. In Fig. 3.23-a and 3.23-b we show respegtiael0 and 100 ele-
ments crack with no dislocations across the interface.



Chapter 4
Analogue models

Here we compare our numerical ndings with results from expents in gelatin.
We used 200 Bloom gelatin powder from the company AG Stoelss.gElatin is
diluted in water at different concentrations in order totrohthe resulting rigidity

of the gelatin mass. It is poured into a cylindrical contaiftgameterd = 29 cm,
heightH = 40 cm). We inject a lighter uid (air) from an inclined hole ateh
bottom of the container close to the lateral walls (see FI§)8 Poisson's ratio
for gelatin is very close to = 0:5 (gelatin has about the same compressibility as
water). Dike propagation is recorded with High De nition @aorders. We mea-
sure incidence and refraction angles of the crack trajgdtwpecting snapshots
of the recorded movies.

Propagating cracks lled with viscous uids show a charatdgc shape with
a head region followed by a thin channel where a little portad the uid is
left behind. The less viscous the uid, the thinner the clelnBecause of its low
viscosity, air seemed the best choice for our purpose, sirecair mass left behind
by the head of the fracture during propagation is negligible

In order to compare the 3D experimental results, obtainealnmedium with
nite dimensions, with numerical results obtained from a Blane strain model
in an unbounded medium, a few considerations are needed.rskhproblem to
be taken into account is the lateral dimenswif the dike (which is in nite in
the plane strain model). During propagation in the 2D modelimposed con-
servation of the mass per unit lengthg = Vo . In order to estimate the

75
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Figure 4.1:Experimental set-up.

corresponding 3D volumvo(?’D) (and conserve the total malysg?’D) = VO(?’D) 0)
we must evaluate the breadthof uid- lled fractures. In the analogue experi-
ments we observe that is typically smaller than, but similar to, its length In
a plane strain model, the 2D volume for a tear-drop crackufagsgy a homoge-
neous medium, linear overpressure pro le with vanishinge$s Intensity Factor
at the trailing edge) is

() gsin
2

V0:

N

so that

Wik

2
L=2 (1 ) gsin Vo

it is a suf ciently good approximation, to our purpose, toiterthe 3D volume as:

veo) oy W
° 2
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Finally, considering the breadth Z,L (from lab. observations), we can write:

Wl
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(1 ) gsin Vo (4.1)

IN

MW

From the producy ®P)  we estimate the intrusion's mass as:

1

3 2 3
MER) = = :
0 4 (1 ) gsin
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0 4.2)

For example, according to eq. (4.2), for the dikes consui@nethe previous
simulations (see Table 3.1 for the employed reference salwath  varying in
the range(1:5 30) GPa, we obtairM(_(fD) (0:8 2:3)1C° kg. This mass
represents the order of magnitude of the mass of a real dadna cross sec-
tion Vo = 100m? on the plangx; z). Moreover, in our 2D model, we conserve
the productVy, o, representing a mass per unit length. As a consequence, if
the breadth of the corresponding 3D dike were to change dymiapagation (in
particular when it crosses the interface between diffelayers), the total mass
M(_(,3D) = %Vow o would change. This is clearly an intrinsic limitation of apk
strain model, in which mass ow in the strike direction is Ibiden. During ex-
periments in layered gelatin, we observe that the relataage ofw is typically
small, so that we shall consider constant; this means that the 2-D m#aés
given by eq. (4.2) remains approximately constant durirggppgation even for a
3D dike. In the next paragraph, when we show the comparistvees numerical
and analogue models, we use eq. (4.1) to set the input 2D edlgnknowing
the real injected volum¥, .

Another problem concerns the nite dimensions of the medinthe analogue
experiments. We try to simulate a semi-in nite half-spaseckosely as possible
by producing gelatin layers much thicker than the cracktleragnd similar to the
lateral dimension of the container. As far as the propagapiath is concerned,
observations show that a crack feels appreciably the pcesgfithe container and
of the interface between layers only when it is much closénéon than its length
L.

Finally, we run our numerical code employing the measurdédesof density
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r 1 (kPa) 2 (kPa) Vair (ml) in fn Frr:
0 | 120 015 - 20 02[(5 1) |[(55 1) | (55 2)
037 16 02 [06 O1] 10 1 [(68 1) |[(72 1) | (73 1)

1.73] 110 015|119 02| 8 1 |(65 1) |(50 1) |(52 10)

Table 4.1:Parameters employed in the numerical runs to reproducenthlegLie experi-
ments:r is the rigidity contrast, 1., are the measured rigidities respectively of the lower
and upper gelatin layer§/y; is the volume of the intrusionK; = 140kPa, = 0:5
and ge = 102 kg=m? are, respectively, the bulk modulus assumed for the aiusitn,

the Poisson ratio and the density assumed for both gelgtarda The experimentally
determined initial value of the dip angle ig and the nal dip ¢, is compared with the
theoretical valuef! with error bounds computed taking into account the unaettain

1; 2. Note that the calculated dip angl]z?1 forr = 0 represents the average dip angle
while only the last 4 out of 71 elements deviate from the ghradirection (the uppermost
dips at67 ).

and rigidity of the gelatin layers, the values of densityngoessibility and initial
volume of the air intrusion (see Tab. 4.1) and compare thatesf the analogue
and the numerical models.

4.1 Experimental results: CASE 0O (free surface)

We injected a volum&/i, = 2 ml of air into a homogeneous gelatin layer with
rigidity = 1:2 0:2. The path of propagation is shown in Fig.4.2. Crack
propagation is very slow and rectilinear, until the uppprgets very close to the
free surface as predicted in section 3.1.3. The initial diglais i, = (55 1)

and do not change until the crack gets the free surface: ttesuned nal dip
angleis y, = (55 1) . Shape and angles resulting from a correspondent run
of the numerical code are shown in Fig.4.3, where a dasheditidicates the
path obtained setting the uid parameters according to @abl and the elastic
parameters as reported in panel 4.2-a4. In this case, freimé#thematical model
we obtain a deviation to the vertical direction for the diggkas of the last elements
4 elements (over 71). The deviation resulting from the maggcal simulation,
involves the lasP:5 mm of propagation for a crack with initial length 6f2 cm.
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Figure 4.2:CASE 0: Snapshots from the record of the rst experiment iblgat.1 (free
surface). In panel (a) and (b) cross section views of thdlad-crack are shown. The
snapshots was taken at the beginning of the experiment,deansls after the air injection,
and at the end of the experiment, with the crack upper tip elrge to the free surface.
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Figure 4.3: Results of the mathematical simulation of gelatin expentmeCASE 0.
We employed in the mathematical model a test angke 2 and an initial number of
dislocation elements = 88.

With the temporal and spatial resolution of ours recordingtruments we was
not able to observe this deviation in the analogue experina¢so because of the
crack acceleration very close to the free surface. Althaihghaverage dip angle
for the boundary element crack results to3®3 in the “ nal” con guration.
Considering this average dip angle from the mathematicaleha@xperimental
and numerical results agree within the experimental errors

4.2 Experimental results: CASE |

We injected a volum¥j, = 10 ml of air into a medium made up by a lower gelatin
layer with rigidity ; = 1:6 0:2 KPa and an upper layer with rigidity, =
0:6 0:1 KPa. The path of propagation is shown in Fig.4.4. Crack pyapan

is very slow and rectilinear, until the upper tip gets vergsd to the interface,
where the dip sharply changes toward the vertical. The di@tdws a “refracted’
trajectory as predicted in section 3.1.2. The incidengeadgleis i, = (68 1)
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(@) (b)

Figure 4.4: CASE I: Snapshots from the record of the second experimeialie 4.1

(r = 0:37). In panel (a) and (b) frontal and cross section views of thdlad crack are
shown: snapshots taken before and after the rigidity tt@msare superposed. In panel
(c) the path followed by the crack is highlighted, after é&rpassage, by injection of red
dye from the bottom of the fractured channel. Lines repratuthe crack path are shifted
to the right with respect to the real crack.



82 CHAPTER 4. ANALOGUE MODELS

s , (Pa)
0 5 10 15 20 0 5 10 15 20

10 ) @1 10

5 \ \ 5
di=73] \ A 5

0 0
\_|d;j=68! F 125
. s I 100
\ \ L 75
10 10 rse
= \ L 25

& o F
N a
10 {aB) {ad) 10 25
\ 50
° V| m,%600Ra || ° Lo
{ 05 b
0 2 0 00
\ b 125
s \‘\ s g0
my =160pPa
10 n=05 10

0 5 10 15 20 0 5 10 15 20
X cm)

Figure 4.5:Results of the mathematical simulation of gelatin expenm€ASE |. We
employed in the mathematical model a test angle 1:6 and an initial number of
dislocation elements = 145.

and the refraction angle iss = (72 1) . Shape and angles resulting from a
correspondent run of the numerical code are shown in FigwhBre a dashed line
indicates the path obtained setting the uid parametersmlicg to Table 4.1 and
the elastic parameters as reported in panel 4.5-a4. Patkstaimties are obtained
employing the upper and lower estimates of thealue computed from measured
gelatin rigidities (i.€.rmax = i* 2 andrmin = ——2). In this case the path
is very stable even perturbing the model parameters. Exyggrial and numerical
results agree within the experimental errors.

4.3 Experimental results: CASE Il

We injected a total volum¥,, = 8 ml of air into a gelatin made up by a soft lower
layer ( 1 =1:10 0:15KPa) and a more rigid upper layer{=1:9 0:2KPa).

In this experiment the total volumd, was injected in two steps: after an ini-
tial injection of 2 ml, suf cient for the propagation in thempliant medium, we
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Figure 4.6:CASE II: propagation of an air- lled crack from soft to rigigelatin layers.
The initial volume of the crack (2 ml) was not suf cient to pragate into the more rigid
layer: the crack stopped at the interface. After a suppleéamgrinjection of 6 ml of air,
the crack bifurcated along the interface (images in thet@ysend into the stiffer medium,
with a dip angle s . In the central image, a line is drawn to highlight the patifiofeed
by the crack propagating from the soft into the rigid layer.



84 CHAPTER 4. ANALOGUE MODELS

of T @f . @]

“ d;, = 6 1 b 125
100

5| | H t s
| 75
10 H L 10 50
F 25

101 @3) ] (ad) | w0 Lo2s
\ 50
5 I . my=1%00Pa | ° L 7

N Nnp,=05 100
R b 125

o
/'1/
o

m,=1100Pa

101 n,=05

r 10

0 5 10 15 20 0 5 10 15 20
X cm)

Figure 4.7: Results of the mathematical simulation of gelatin expentneCASE 1.
We employed in the mathematical model a test angke 1 and an initial number of
dislocation elements = 111.

added 6 ml of air in order to obtain a suf cient total volumetbé intrusion for the
propagation in the stiffer layer (see Fig.4.6). Again, theck follows a “refracted’
trajectory, as predicted in paragraph 3.1.4. The incidedigeangle ig65 1)
and the refraction angle (50 1) . In Fig.4.7 we report shape and angles result-
ing from a correspondent run of the numerical code. The dhbhe indicates the
path obtained setting the uid parameters according to &bl and the elastic
parameters as reported in panel 4.7-a4. The paths delgitenwide orange area
are obtained employing the upper and lower estimates of #vedue computed
from measured gelatin rigidities (I.6.max = i* j andrmi, = i+ i). In
this case, perturbing the elastic parameters, we obtaimsiderable variability
in the refracted angle, according to the consideration®sg in section 3.1.4.
Experimental and numerical results agree within errorsfodanately, we were
not able to produce gelatin layers with rigidity contrast&ér than 0.37 so that

the extreme cases of dike-to-sill conversions could nothis®=rved.




Chapter 5
Discussion and conclusions

This work illustrates the relevance of elastic and densifyeting in the path of
dikes and other uid- lled fractures and demonstrates ttieg direction of prop-
agation of uid- lled cracks changes when they cross theenfdice between ma-
terials with different elastic properties. Explicit saluts from the mathematical
model were shown taking into account elastic and densigodignuities and frac-
ture toughness heterogeneities.

Results from numerical 2D boundary-element modelling aimbtatory experi-
ments on air injection in gelatin provide the same path dmnaas a function
of elastic parameters, density difference between ho#t and uid, mass and
compressibility of the uid.

5.1 Numerical model

The boundary-element code is based on 2D plane strain aadlgolutions for a
medium made of two welded half spaces with different elgstimmeters. The
dike trajectory is chosen among a range of possibilitieswting to energy min-
imisation. Mass is conserved during propagation, and tke wdalls close at the
lower tip while a new fracture is created at the top. Real glikeay lose or gain
mass along their path. Since one focus on a limited regiosedo a layer inter-
face, the assumption of mass conservation should not bectest
This model does not account for uid dynamics inside the dike for ther-

85
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mal effects. Since it does not include the viscosity of thel,ut cannot reveal

any information related to velocity of propagation. Changeviscous dissipa-
tion, possibly occurring when the dike crosses the intexfatay affect the energy
balance in a way that the present model cannot quantify.

The simulations show that gravitational energy has an itapoeffect on the
propagation path. Elastic parameters lead to increasinganeasing crack open-
ing and hence to shape changes. This modi es the positidmeaténtre of gravity
of the uid batch and its potential gravitational energy.igmteraction between
elasticity and gravity had never been highlighted before.

The layer interface is modelled analytically. This allovesta retain many sig-
ni cant gures in the solution of the crack problem even whire crack is very
close to or is crossing the interface. The difference in gneelease for various
directions of the test elements may be very similar but inéséed con gurations
this code can distinguish the preferred direction with signt accuracy. Numer-
ical results are stable when the crack is discretised withrentftanN = 40 ele-
ments. As for the deviation angleof the test dislocations, stable paths are found
when is 180=N. The uncertainty on the preferred propagation directian is
the order of the test angle used in the run.

5.2 Analogue experiments

Our numerical results on the propagation path agree qtiaéta and quantita-
tively with the performed laboratory experiments. This gors the validity of
the energetic criterion employed to predict the propagatimection of a slowly
moving crack. In particular, this proves that the energytabations important
to predict dike path are the gravitational potential enesigg the elastic strain
energy. Although the energy loss due to viscous dissipatiarack tip or uid
motion within the crack has been shown to be important in tamsng the prop-
agation velocity (see Dahm, 2000b; Roper & Lister, 2005,720the present nu-
merical model predicts within errors the propagation patlatieast for air- lled
fractures slowly moving in gelatin.

The comparison between numerical models and analogueisgrés allows
us to validate the numerical model with experimental obestgons and vice-versa.
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For instance, it has been shown experimentally that thekdederal breadthw is
nearly constant before and after crossing the interface Kealta et al., 2005,
Fig. 2), so that mass is conserved automatically wiklew is conserved. v
should vary signi cantly — e.g. while crossing the interéaovhen the frontal
shape of the fracture is complicated — an additional cowacshould be intro-
duced. The fact that the 2D mathematical model predictslérme and refraction
angles within errors demonstrates that 3D effects are small

A free surface is present in the experiments and not in theréa/numerical
models — its effect was found to be important for the velocltange (Rivalta &
Dahm, 2006) close to the free-surface itself. Numericalltsshows (CASE 1b,
sec. 3.1.3) the propagation direction is affected by thegaree of the free surface
only when the upper tip is closer to it thafoof the fracture length. This makes us
con dent that the effects of a free surface are negligiblewhonsidering changes
of propagation direction at the interface between diffetayers if the thickness of
the upper layer is larger than dike length. Moreover, rigigfal and bottom walls
of the container provide boundary conditions of vanishimgpthcement which,
in the numerical model, are imposed at in nity. In the analegxperiments, the
interface crossing ever occurs near the centre of the awertan order to minimise
undesired effects from its lateral surface.

Experimental conditions do not reproduce very large catsraf elastic pa-
rameters. On one hand, this prevents us validating the noaherodels where the
contrastig & 2orr . 0:3. On the other hand, moderate rigidity contrasts may
be more representative of typical crustal values inferrechfseismic soundings.
However, in certain conditions, when the propagation is/\&ow, the temper-
ature is high and the deformation is large, then anelastcgsses are relevant
which may provide much lower effective rigidity at depth mhielt by seismic
waves. Results of the numerical model for high rigidity cast may apply to
these conditions.

5.3 Implications for dike propagation in the crust

The illustrated refraction-like behaviour occurring a® ttrack crosses the in-
terface between layers of different rigidities has variouplications for magma
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dikes in the mantle and crust.

Dikes inclined with respect to the vertical are expecteddawedbp at depth,
close to a magma chamber, due to the tensional stress elddad by cham-
ber in ation: for instance, maximum tensional axes arourgpherical in ating
source are perpendicular to the radial direction so thatsldan be generated at
any angle. Furthermore, oblique dikes form if magma ascémadsigh weakness
planes, such as the ring faults usually present within votcealderas (e.g. Bur-
chardt, 2008; Gudmundsson & Brenner, 2005).

If a dike always meets transitions from more rigid to more ptant layers,
its path is predicted to gradually approach the verticaéation. The deviatoric
stress eld of tectonic origin (which is ignored in the prespaper) is considered
to be responsible for the nearly vertical dip often obserfeedeal dikes, but the
refraction phenomenon described above may be importantebhs

In any case, observations of strongly inclined dikes argueat (e.g. Bur-
chardt, 2008) and inclined dikes are often inferred fronmension of deformation
data (e.g. Froger et al., 2004; Sigmundsson et al., 1999)rand seismic data
(e.g. Chouet et al., 2003).

On the other hand, transition from compliant to stiff rockeften found when
competent lava beds are superposed onto pyroclastic depbsisuch cases our
model predicts dike de ection toward the horizontal or ewlh formation, as
found in the eld by Burchardt (2008); Gudmundsson & Bren(@005). A strik-
ing example of such a behaviour is shown in Figure 5.1. Simdsults are found
by Kavanagh et al. (2006) with gelatin experiments.

Moderate rigidity contrasts may be more representativgmtal crustal val-
ues inferred from seismic soundings. However, in certaimddons -when the
propagation is very slow, the temperature is high and therdeition is large
- then anelastic processes are relevant which may providshiower effective
rigidity at depth than inferred by seismic waves. A slow ditezling an effective
long-term rigidity rather than a short-term one, would effecly see the mantle-
crust boundary (or any boundary between a viscoelastic arelastic medium)
as a transition toward a more rigid medium, hence tendingetedl toward the
horizontal. As mentioned in the introduction, recent gemital studies on the
topography of the Moho at continental rift zones have evigenthe presence of
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Figure 5.1:A dike de ected toward the horizontal when approaching testiayer. The
picture was taken by Prof. Michael S. Ramsey, UniversityitiBurgh, in the Colorado
River Grand Canyon, Arizona. The dike is basalt and intrudiagonally into the Hakatai
Shale (the red host rock); the stiffer rock above the dikehgi@no Quartzite. Typical
rigidity values for these rocks yield a ratic= .= ; 6.
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stacked sills from low to mid crustal depths (see Thybo & Bkel, 2009; White
et al., 2008). Smith et al. (2004) evidenced a 8ipping magma body at about 30
km depth in the Lake Tahoe area, where it stopped after pedjpapa few km, as
inferred from migration of induced seismicity. Accordingaur model, this may
be explained in terms of magma meeting a rheological discorty.

An important role for sill formation may be played by densstyati cation:
preliminary tests adding to the model a density contraseqgsed to the rigidity
transition, have shown that, as far as the dike density istalaan both layers, the
in uence of density layering can change slightly the dewmatdue to the elastic
discontinuity but cannot be the only responsible for thisqdmenon. If the uid
density is higher than in the upper medium, the dike stops sfter reaching the
neutral buoyancy level (as already suggested by Lister & Ki€91)).

Further investigations considering the local and tectstress eld are neces-
sary in order to establish quantitatively what implicasdactonic stretching may
have on sill formation and, more generally, on the propagapiath in proximity
of elastic discontinuities, since sharp stress heterageseaypically arise from
rigidity discontinuities.

The model might be also generalised to account for viscoagygrioss, pro-
vided by uid motions and continuous magma supply from a deayrce.

The evidence for the refraction behaviour in gelatin expernts (see Fig. 6b
in Kavanagh et al., 2006, for an additional example of refoadrom a compliant
to a more rigid medium) seems to be less readily availablesid observations.
However, most observations on dikes are limited to the uppest, where most
dikes arrive already vertical, so that they would not be d®d as they cross a
rigidity transition; moreover, if layers near the surfage #in and rigidity con-
trasts alternate (for example asetraf 1andr > 1transitions), dikes would see
an average effective rigidity. Therefore, a eld validatiof our ndings may be
possible in case of deep erosion of thick layers with higrditg contrast.

5.3.1 Future work

A development of this model should be aimed at the study of gitopagation
under the effect of topographic load and tectonic stresd, since sharp stress
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heterogeneities typically arise from rigidity discontities.

Studies of dike-dike and sill-dike interaction should beo#imer application of this
model that could be developed also to account for an integotagma-chamber
providing a certain magma supply.

The model should be applied also to the study of the seigmimituced by dike
propagation, using a more realistic model for the Coulonlofa function. The
model might be also generalised to account for viscous grless, provided by
uid motions and continuous magma supply from a deep source.
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Appendix A

In appendix A we write the functiongi (X; z; X1; 21), 0:(X; Z; X1; Z1), hy(X; Z; X1; 1) andh,(X; z; X1; z1),
that appears in equations (2.10) and (2.11), relative tadibglacement eld generated by a vertically
dipping, semi-in nite, elementary dislocation in a bouddaedium.

For a tensile dislocation (eq. 2.10), tleading functionrelative to thex component of the displacement
is:

8
e I PR 1 (x x)(z z) X
gX(X:Z > O,Xl,Z]_ > O) - 2_ ( X,Z,X]_,Z]_)+ 2(1 1) r2 - UJI.J YlJ
1 1 X Xz z
O(X;2 < 0;X1;2,> 0) = > ( X;Z;X1;27) + 21 2)( 132 1) - U2Ij Yz
y A.l
O RN SR C S0 CANE ) AT -
(X;2> 0;X1;21 < 0) = 5 ( X;Z;X1;21) 20 ) 2 . 2 Y2
1 1 X Xz z
2 (X2< 0;X1;21< 0) = > ( X;Z;X1;21) + (1 2)( lr)g 2 Uy Yy

wherer = P (x Xx1)2+(z z)?%isthe distance between the dislocation line and the dairz), is
the function 2.4 translated of a vec{or;; z;) and matrixU', U'" andY are written respectively in (A.5),
(A.6) and (A.12).

For thez component we have:
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8
e e _ 1 ro@z z)? X
% %(X;2> 0;Xq;2,> 0) = iq Y (1 29)lIn w 7 . Uy Vs
. Y _ 1 r(z z)?
0,(X;Z2 < 0;X1;21 > 0) = Id ) (1 25)In = T . Uy Yy
Y A.2
s O _ 1 nt @ X -
gZ(X,Z > 0;Xq;21 < O) = 2 (1 l) (1 2 1) n E) T - U4j Y4j
. Y 1 r (z z)°
- gZ(X! Z < O,Xl, Z; < O) = m (1 2 2)In 2_C T U:|3]| Y3]

wherec is needed to make non-dimensional the argument of the khgaiand, for a closed dislocation,
is its half-length.

For a dip-slip dislocation (eqg. 2.11), the loading functretative to thex component of the displacement
is:

8
e e _ 1 I CEEA RS
% hy(X;z > 0;X1;21 > 0) = a3 (L 21)In 2 B T4 Y
. Y _ 1 r (z z)?
he(X;z < 0;X1;2, > 0) = PR, (1 25)In et T . Ty Yy
y A.3
) . _ 1 r (z z2)? X I (A39)
hy(X;z > 0;%1;2; < 0) = m Q@ 29ln E:+ 7 . T4j Yo
) iy - _ 1 r (z z1)? I
hX(X,Z < O,Xl,Zl < O) - m (1 2 Z)In §:+ T T3J Y3]

where the matrix@' andT!" are written in A.9 and A.10.
For thez component we have:
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) Y _ 1 oy 1 (X Xxi)(z z1) Xt
h,(X;z > 0;X1;z; > 0) = > ( X;Z;%1;21) 21 D r2 - Tllj Y
) Y _ 1 oy 1 (X Xxi)(z z1)
h,(X;z < 0;X1;z, > 0) = > ( X;Z;X1;21) 20 2 r2 - T2Ij Yo
- A.4
h . > O . < O —_ 1 R . 1 (X Xl)(z Zl) X TII Y ( )
Z(X,Z 1 X121 )_ 2_ ( X’Z’Xl’zl) 2(1 1) r2 =1 2 '
. o _ 1 o 1 (x xi)(z zy)
hZ(X, VA < O,X]_, Z]_ < O) - 2_ ( X, ZaXla Zl) 2(1 2) r2 le T:II-JI Yl]
The matrixU' andU'" are:
0 1
1 1 2 1 3 4 1
'C, + D —(C; D) *(C; D) —(C. D)
1 2 1 2 1 1 1
1 1 2, 1 1
+ D ——(C;+D 5 D
5 Cy 2, 5 2(C1 ) 5 2(Cl ) 0
Ul = (A.5)
1 1 2 1 3 4 1
D 5 C 5 (C D) *(C; D) —(C; D)
1 1 1 1 1
1 ,. 1 2, 1 1
D Ci —(Ci+D —~(C, D 0
2 2, 2 2( ! ) 2 2( . )
0 1
1 1 2 1 4 1
¢, b L+p) 2 %%c+p) Lc+D)
1 1 2, 1 1
C D -—(C, D —~ (C,+ D 0
A PR T
Ul = (A.6)
1 1 2 1 3 4 1
’D 2C:  5—(Ci1+ D) 2(Ci+ D) —(Ci+D)
2 2 2 2 2 2 2 2
1 1 2, 1 1
D = D — + D
1 21 C 2 1(C2 ) 2 1(C2 ) 0
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whereC,, C, andD are:
(a+¢)+ d (2+¢)+ d Cm €
= = = _-m - A7
C1 e & C2 e o Pt e @ (A7)
with:
_ 3 4 1. _ 3 4 2
a; = 4 % ) A = 2 % )
1 2 2 1 2 1 1 2 1 1
d= ; e= ;
2 2 2 1 2 1
1+ 3 4.)3 42 1+3 4,)@B3 42
( : ) ). o= 1 : ) ). (A8)
1 2 1 2
_ 1 . _ 1 2 _ .
1 - 2 1 1’ 2 = 2 1 2’ - 2 1
1 1 1 1 3 .
1 4 1 1’ 2 — 4 1 ’ - 2 1-

The matrixT' andT" are:

2 21 1 211 2(1 22 2)

0 1
11 22 1
11 22 2 212 2 211
- (A.9)
1 11 22 1 221 1 211 2(1 2312)
2 11

2 2 2+2 12 2 211
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0 1
11+t 202 2 212 2+2 22 2(2 21 2)
11+ 22 1 221 1+2 25
T" = (A.10)
2 11 22 2 212 2 222 2(2 212)
1 11 2 2 1+2 21 1 222

where ; and , are:

(A.11)

N
I
IR

1
T2 1+3B 4y, 2+(3 4 1
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The matrixY is:

8
= 559"‘[(21 +Z)(X  Xg)] g Ya1
Z1t+ 2
arctan
X

X1
z(X  X1)

8
g Yll
Y. =
T (X xy)?+(z+ 71)?
g Y13
Z Y =

z3(X  Xi)
(X X1)2+(z+ z1)?

22z1(X  X1)(z1 + 2)
[(x  x1)2+(z+ z)2

1. (X X1)?+(z+ z1)?
Y31 = =
n = n (20)2

2(z + z;)
(X X1)2+(z+ z1)?

z1(z+ z3)
(X X1)?+(z+ z1)?

zz; [(X X1)2 (21"‘2)2]
[(x  x)2+(z+ z1)2

RKIRRARRRIRN - AARRRRRRRXRRRAXRAN/ ©O
P
N
I

" RRRRKARRKARRARY - /ARKRXRRXRRARRRARY/ O
= =
S =

APPENDIX A.

559 ni(zz 2)(x  x4)]

arctan

X1

Z(X  Xi)
(X X1)2+(z z)?

z3(X  Xj)
(X X)2+(z z)?

22z1(X  X1)(z1 2)

[(x x1)2+(z z)?2°

1. (X x)2+(z z1)?
2 (2¢)2

2(z  z;)
(X X1)2+(z z)?

z1(z z1)
(X Xx1)2+(z z1)?

zz,[(x  x1)* (z2  2)7]

[(x x)2+(z z1)2

(A.12)



Appendix B

In appendix B we write the functions” (x; z;x1; ;) andsi”(x; z;x1; z), that appears in equations
(2.15), relative to the stress eld generated by a verticdlpping, semi-in nite, elementary dislocation
in a bounded medium.

For a tensile dislocation ( rst equation in 2.15), tleading functiorrelative to thgxx) component of the
stress tensor is:

1 (z_ z)[B(x  x1)*+(z 21)2]+

2 (z z)B(x x1)*+(z z1)7] +
2 (1 2) r4

s (2 < 0;x4;21 > 0)

(2C1+ D)l2s (Ci+ D)l2+(Cy D)lgs

(B.1)
1 (z z)BKx x1)*+(z z)7 +

21 ) r4

st (x;z > 0;x1;21 < 0)

(2C; D)l (Ca; D)lgp+(Cy+ D)y

2 (z z)B(x x1)*+(z z1)7] +
2 (1 2) r4

s(x;z < 0:%q;21 < 0)

8
sw (X2 > 0;x1;21 > 0) T D) =
+(2C, D)lix (C; D)l 3(C; D)liz+2(C, D)lag

+(2C1+ D)ly; (Ci+ D)lyp 3(Ci+ D)liz+2(Cy+ D)y
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X1)2+(z

C, andD are written in (A.7),] is written in (refB:11).
For the(xz) component we have:
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SP(z> 0xiz> 0)= 5 a - 3 & iz Zr14)2 (x_xa)]
sE(x;z < 0;Xq;z1 > 0) = 0 2 5 (x_ x1)l(z Zr14)2 (x_ x1)7]
SP(z2> 0xz<0)= 5 a - 3 & iz Zr14)2 (x_xa)]
s (2 < 0;x1;z1 < 0) = 0 2 5 (x_ x1)[(z Zr14)2 (x  x1)?]
whereG' andG" are written in (B.7) and (B.8).
For the(zz) component we have:
s (x;z > 0;xq;2, > 0) = e 1 5 (z_ z)l(z Zrlzz (X x1)°]
Sz < 0xz> 0)= 5 a - 3 z 2zl 2:32 (x_xa)]
s (x;2 > 0;x1;21 < 0) = e 1 5 (z_ z)I(z Zrlzz (x  x1)?]
st (X2 < O;x3;21 < 0) = 7 @ - 3 =)l Zrlzz (x_x)’]

z;)? is the distance between the dislocation line and the fairt), C,

(B.2)

(B.3)
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For a dip-slip dislocation (second equation in 2.15), thelog function relative to théxx) component

of the displacement is:

(2) 1 (x x)(z z)?

X1)?] +

. > 0. . > O -
(x;z 1 X15Z1 ) 2 D 4

D)ls3+2(Cz D)l

X1)?] +

(C1+2D)lar (Ci+ D)lg2+(Cy

(2) 1 (x x)l(z z)?

D)las
(B.4)
X1)?] +

S« (X;Z2> 0;X1;21 < 0) =

2 (1 1) r4

(Co 2D)lax (Co; D)lap+(Cyo+ D)las

(2)

1 (X x)l(z z)> (x x1)?7

S (X;2 < 0;X1;z,<0) =

8
SXX
(C2 2D)Ig+(C, D)lx
2
D(x;z< 0:xq;21> 0) = 5 (11 - (x  x0)(z Zrl4)
i 2 (1 1) r4

(Ci1 2D)I3+(Cy+ D)l3g

For the(xz) component we have:

3(Cy+ D)lzz+2(Cy+ D)lsy
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: z 2z 2> (x x)3 X
(2) (ye iy — 1 z )z Zp X Xz |
Sxz(X;z> 0;%y;2z;> 0) = @ ) i +j=1 Fljllj
2 2 X4
@D (v-7 < O-x.- - 1 (z z)(z z1)° (X X1)7] + L
2 (x;z < 0;X1;2, > 0) R o . Fo 12
X4
() 7y iy . _ 1 (z z)l(z z1)> (x x1)3 I
§ Sz (X;Z2> 0;%1;2,<0) = 2 ) i +J=l sz 5
X4
@) /0. o . _ 1 (z z)(z z1)®> (x x1)3 1
> $d(6z< Ox;z< 0)= 5 a 7 + . Faj 1y
whereF' andF" are written in B.9 and B.10.
For thezz component we have:
: (x x)lx x)2+3(z z)] X
@D (yv-7> 0xe7. > 0) = 1 X x)l(x  x1)*+3(z z)7 | o
SZZ (X,Z O,X]_,Z]_ O) 2 (1 1) r4 le F3J I3J
X4
(2) (o o . _ 1 (X  x)l(x x1)2+3(z z)%] |
Szz (X) Z< 01Xl1 Zl > 0) - 2 (1 1) r4 + =1 F4J |4J
A
. . _ . (x x)l(x x1)2+3(z z)Y X
% SgZZ)(X’Z o O) ) 2 (1 1) r4 ' j=1 Félljl |4i
X4
(2) (o o . _ 1 (X x)l(x x1)2+3(z z)%] I
> Szz (X) Z< 01Xl1 Zl < 0) - 2 (1 1) r-4 + F3J |3]

(B.5)

(B.6)



The matrixG' andG'" are:

The matrixF' andF'" are:

é

(C. D)

(C.+ D)

(C. D)

C,+D

(C.+ D)

(C. D)

(C.+ D)

C:+D

(C. D)

C,+D
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1
C, D 2C, D)
C: D
(B.7)
(C2 D) 2(C;
(C
1
C,+D 2(C,+ D)
C,+D
(B.8)
(C,+ D) 2(C,+ D)

(C,+ D) 0

(C2 D) 2(C; D)

(C, D) 0
(B.9)
(C2 D) 2(C; D)

)-02992222222 2 L

(C, D) 0
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FII =

The matrix! is:

Z+ Zg

0
D
Cs

C,

(x

X0)? +(Z + 20)?

(z+

20)2

(X Xo)?

C:+D

C, D

(C.+ D)

C, D

“Tx

2

X0)? +(Z+ 20)?J?

(z+ 20)°

(X Xo)?

Z7

“f(x

Xo)? +(Z + 20)%F

(z+ 20)[(z + 20)?

3(x  x0)?

[(x

X  Xo
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(x
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220[(X
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(z+ 20)(X  Xo)
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(B.10)
(C:+D) 2(Ci+ D)
(C2+ D)

Z 27y
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| 22
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