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Summary

During my Ph.D I developed, in collaboration with Maurizio Bonafede and Eleonora

Rivalta, a mathematical model describing �uid-�lled crackpropagation in pres-

ence of elastic, density and fracture toughness discontinuity of the embedding

medium. Fluid-�lled cracks are modelled in plane strain con�guration employing

the boundary element method. Analytical solutions for the dislocation elements

are employed, the solutions are built starting from the works of Bonafede & Ri-

valta (1999) and Rivalta et al. (2002) and are generalised for arbitrary tilted ele-

mentary closed dislocations.

The pressure gradient along the crack is assumed proportional to the difference

between the densities of the host rock and the �uid. Mass conservation is im-

posed during propagation and �uid compressibility is takeninto account. The

path followed by the crack is found by maximising the total energy release, given

by the sum of the elastic and gravitational contributions. An energy threshold for

propagation, depending from the fracture toughness of the host rock, is consid-

ered. Gravitational energy plays a major role during propagation also in absence

of density layering; in particular, in proximity of layer boundaries, this role is en-

hanced by the shift of the centre of mass due to shape changes.

The mathematical simulations, in presence of elastic discontinuities, provide a

sort of “refraction phenomenon”, that is a sudden change in the direction of prop-

agation when the crack crosses the boundary separating different rigidities: if the

dike enters a softer medium, its path deviates toward the vertical, if the dike enters

a harder medium its pats deviates away from the vertical and may even become

arrested as a horizontal sill along the interface, if the rigidity contrast is large.

Density layering do not in�uence the direction of propagation of the dike. A den-

sity discontinuity of the host rock causes length and thickness variations and can

xiii



xiv SUMMARY

provides the arrest of the dike if the density of the host rockdo not yields enough

buoyancy to overcame the energy threshold for propagation (low density layer).

Fracture toughness discontinuities are considered in order to reproduce the con-

dition of weakly welded layers. In this cases the energetic preferred path, when

the dike encounters the interface, is the boundary between the layers. For these

simulation is shown, in different rigidity and density layering con�gurations, the

required fracture toughness drop on the interface, in orderto obtain propagation

along the interface.

For validating the mathematical �ndings laboratory experiments were performed

injecting tilted air-�lled cracks at the bottom of a transparent cylinder containing

two elastic gelatin layers with different rigidities. Cracks are observed to deviate

when they cross the rigidity transition surface. The experimental observations are

compared with the numerical results. Analysis of the experimental data con�rm

qualitatively and quantitatively the main characteristics of the mathematical simu-

lations. The laboratory work took place at the 'School of Earth and Environment',

University of Leeds (UK), during a period of six months in which I started the

collaboration with Eleonora Rivalta.



Chapter 1

Introduction

Recent studies on continental rift zones have evidenced a previously unsuspected

role of magmatism in extensional tectonics. Large scale seismic experiments

highlighted the presence of re�ective high-velocity structures in the deep crust,

interpreted as a series of stacked sill-shaped intrusives Thybo & Nielsen (2009);

White et al. (2008). No melt seems to have accumulated in the uppermost mantle

(40-60 km depth) as no area of low seismic velocity has been found there. Sills

must have been generated by a series of dikes ascending and interacting with the

tectonic stress, rheological transitions and previous intrusions. It is not yet ascer-

tained what mechanism leads to the formation of stacked sills, what role is played

by the Moho, and how the ascent trajectory of dikes is modi�edby abrupt changes

in the (visco)elastic properties of rock caused by either previously emplaced sills

or the Moho.

Early analytical investigations on the geometry of propagating dikes include

Weertman (1971, 1973), Pollard & Johnson (1973), Secor & Pollard (1975), Pol-

lard (1976). These works develop a simple but powerful framework based on

buoyancy and rock resistance. A linear pressure gradient onthe crack plane and

signi�cant fracture toughness result in an inverse tear-drop shape. More compli-

cated shapes describe different con�ning stress or drivingpressures. Applications

include hydrofractures, water crevasses in glaciers, magma dikes.

Local and regional stresses undoubtedly control the direction of dike propa-

gation. Detailed statistical analysis of dike orientationcan be employed in order

1
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to infer the local stress and paleostress history (see e.g. Marinoni & Gudmunds-

son, 2000), assuming that dikes orient themselves along thedirection of maximum

compressive stress and open up in the direction of minimum compressive stress.

However, other factors may in�uence the energetics involved in the opening and

propagation of dikes. The strain energy released during dike emplacement is pro-

portional to the elastic parameters of the hosting medium. In this way, hetero-

geneities or other sources of anisotropy may cause a change in the energetically

preferred opening direction and path.

Other authors, assuming vertical propagation, concentrate on solving the full

system of equations describing the motion of viscous buoyant �uid within the

crack and the elastic resistance of the hosting medium (e.g.Lister, 1990; Lister &

Kerr, 1991; Spence et al., 1987). Meriaux & Jaupart (1998) �nd time-dependent

numerical solution of the coupled problem for a buoyancy-driven magma-�lled

crack, growing and propagating in an elastic plate on top of areservoir at constant

pressure. Dahm (2000a) solves numerically the interactionproblem of viscous

�ow within the crack, elastic response of the hosting rock and fracturing. He

predicts a high pressure gradient at the tail of the fracturewhere a singularity

would be present unless small quantity of �uid is left behind. Roper & Lister

(2007) extend the results of Lister (1990) to model the case when the fracture

toughness of the hosting rock is large. The shape of the head region of the dike

varies signi�cantly with the stress intensity factor and becomes very similar to the

typical tear-drop “Weertman” shape. Viscous effects control the propagation rate.

Viscous stress drop is signi�cant only at the crack tip and within the tail region,

while it is negligible in the head, where the pressure gradient is nearly hydrostatic.

The fracture has a complicated shape (see Roper & Lister, 2007, Fig. 10), with a

nose - head region followed by a neck-tail-knee structure very similar to the one

depicted in Dahm (2000a), Fig. 6a.

Dahm (2000b) develops a boundary-element model for a �uid-�lled buoyancy-

driven crack, propagating in a homogeneous half-space, studying how stress and

density heterogeneities govern the direction of dike propagation. In this model,

the crack is �lled with a non-viscous batch of �uid with constant mass and, while

advancing, it closes at its bottom leaving a broken trail behind. Propagation is

driven by the release of elastic strain energy. A similar model was used by Kühn
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& Dahm (2004) to study the focusing of dikes ascending from a large melt zone

to a narrow mid-oceanic ridge, and by Kühn & Dahm (2008) to investigate how

stress affects dike interaction. Applications include sheeted dikes and magma

chamber formation at mid-oceanic ridges.

All the mentioned papers model dikes as 2D �uid-�lled cracksin a homo-

geneous medium. Attempts to extend the models to 3D or to layered media are

limited to static cracks. Gudmundsson (2005) analyses the in�uence of local stress

and layering on dike propagation in volcanic areas, assuming that dikes propagate

in the direction of the maximum compressive stress. Stress heterogeneities due to

abrupt changes in the elastic properties of different layers may cause the arrest of

dikes at shallow crustal depths while homogeneous stress conditions favour dike

propagation to the surface.

Rubin (1995) reviews the many physical processes in�uencing dike propaga-

tion and examines their assumptions critically. He concludes with an outline of

major unresolved problems related to dikes. Among others, he highlights the rel-

evance of crack growth, magma buoyancy and the ductile-elastic transition in the

host rock.

From an experimental perspective, signi�cant progress hasbeen made in the

understanding of dike propagation by using gelatin as a crust analogue and various

�uids as magma. Gelatin approximates well an elastic medium: it is brittle at re-

frigerator temperature and its rigidity can be controlled by varying the concentra-

tion of dry gel powder dissolved in water. Among others, Takada (1990) describes

observations of the shape and velocity of cracks �lled with �uids of different den-

sity and viscosity. He �nds that crack shape corresponds to the analytical formu-

lation described in Pollard & Mueller (1976); Weertman (1971, 1973). Heimpel

& Olson (1994) study dike propagation performing experiments on buoyancy-

driven �uids injected into gelatin. They vary the buoyancy,volume and viscosity

of the �uid over orders of magnitude and use several different gelatin concen-

trations. They focus mainly on propagation velocities, identifying two regimes

of propagation: a “low velocity” regime, with subcritical stress intensity factor

and a “fast velocity” regime with super-critical stress intensity factor. The prop-

agation velocity is found to depend on the �uid buoyancy, theyield strength and

fracture toughness of the solid medium, and on the size of the�uid-�lled frac-
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ture. Ito & Martel (2002) study dike-dike interaction concluding that the stress

�eld induced by a previous dike stuck in a medium would attract following dikes

causing magma accumulation. Watanabe et al. (2002) performs a series of ana-

log experiments on crack propagation in presence of an external stress �eld. In

particular they concentrate on the effect of the topographic load and study crack

path for different ratio of the shear stress on the crack plane to the average �uid

excess pressure. They also perform experiments of interaction between two par-

allel cracks studying the dependence of path deviation by the ratio of the shear

stress generated by one crack to the average excess pressureof the second. They

�nd more de�ection for cracks with larger ratio and no de�ection for ratios less

than0:2. Rivalta et al. (2005) investigate the role of layering on dike propagation.

They observe approximate steady-state regimes when air-�lled fractures propa-

gate within one layer, while signi�cant changes in shape andvelocity occur while

the fractures are crossing the layering interface. Carefulanalysis of the propa-

gation path shows that even during the so called steady-state regimes, fractures

accelerate if they approach a less rigid medium or the free surface and deceler-

ate in the opposite case. Fractures are found to stop at the boundary when they

contain a subcritical volume of �uid with respect to the upper medium. They also

observe sill formation along the boundary if the rigidity contrast is large. (Rivalta

& Dahm, 2006) concentrate on free-surface induced acceleration. Kavanagh et al.

(2006) perform analogue experiments injecting water in layered gelatin. They fo-

cus on sill formation at the transition surface from a compliant to a stiffer medium.

Complete conversion from dike to sill propagation is observed for large driving

pressure and high rigidity ratio between layers, while dikearrest is observed in

condition of lower driving pressure and low rigidity contrasts. Hybrid dike-sill

forms are observed for intermediate values of driving pressures and rigidity ra-

tios.

Different methodological approaches often lead to different conclusions about the

dominating factors. This results in a contradictory image of magma propagation,

and a coherent theory of dike dynamics is still missing. In-�eld evidences, the-

oretical and analogue approaches have rarely been combinedto create a more

heuristic picture of dike emplacement and propagation.

The aim of this thesis is to study the in�uence of layering on the propagation
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of �uid-�lled fractures in general and magma-�lled dikes inparticular.

The Chap. 2 will be devoted to present the mathematical background on in-

clined elastic dislocations in layered media. Then a detailed description of the

numerical algorithm is given. The dike is modelled as a �uid-�lled boundary el-

ement crack in plane strain con�guration. This approach to the problem of crack

propagation was partially inspired by the work of Dahm (2000b). A welded in-

terface between different elastic media is taken into account using analytical so-

lutions from Bonafede & Rivalta (1999) and Rivalta et al. (2002), so that the

present model extends to heterogeneous media results obtained by Dahm (2000b)

for a homogeneous medium. Moreover, in the present work, thepressure gradi-

ent along the crack is assumed to be proportional to the difference between the

densities of the host rock and the �uid. A �nite batch of magmais considered

and the compressibility of the �uid is taken into account in order to conserve the

mass of the intrusion during its motion. The mathematical model allows us taking

into account an external stress �eld, density strati�cation and fracture toughness

heterogeneities. The growth, arrest and direction of propagation of the crack is

governed by an energetic criterion: the motion of the dike isdriven by the min-

imisation of the total energy, given by the sum of the elasticstrain energy and

the gravitational potential energy — ignored by Dahm (2000b). Propagation is

allowed when the energy release exceeds a fracture energy threshold.

The numerical model provides the path followed by the crack during propagation,

as well as its shape and the stress and displacement �elds induced in the surround-

ing medium.

In Chap. 3 the �ndings for the following relevant cases are illustrated (see also

table 1.1):

� CASE 0, CASE 1-1b and CASE 2: homogeneous medium, transitionfrom a

rigid to a compliant medium, interaction with the free surface and transition

from a compliant to a rigid medium.

� CASE 3, CASE 4 and CASE 5: density layering in a homogeneous elastic

medium, in a medium with transition from a rigid to compliantand vice-

versa.

� CASE 6, CASE 7 and CASE 8: fracture toughness heterogeneities. The pre-
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CASE � 1 – � 2 � 1 – � 2 E 0
T – E tr

T

(GPa) (kg/m3) (MPa�m)
0 30 – 30 3300 – 3300 0 – 0
1 30 – 1.5 to 24 3300 – 3300 0 – 0
1b 30 – 0 3300 – 3300 0 – /
2 1.5 to 24 – 30 3300 – 3300 0 – 0
3 30 – 30 3000 – 2800 and 2400 1 – 1
4 30 – 12 3000 – 2800 and 2400 1 – 1
5 12 – 30 2800 – 3000 1 – 1
6 30 – 30 3000 – 3000 3.5 – 1
7 30 – 12 3000 – 2800 5.2 – 1
8 12 – 30 2800 – 3000 1.5 – 1

Table 1.1:Parameters used in the shown cases. The index 1 and 2 refer to the �rst (lower)
and second (upper) layer;E 0

T is the energy threshold for propagation in the medium and
E tr

T on the interface separating the two layers. The density of the intrusion is 2600 kg/m3

with a Bulk modulusK f = 10 GPa and a volume (per unit length)V0 = 3 � 10� 3 km2.

vious con�gurations are tested reproducing the condition of weakly welded

layers.

The last paragraph of Chap. 3 is dedicated to a performance analysis of the ele-

mentary dislocation approximation close and across the boundary between differ-

ent rigidities.

Chap. 4 is dedicated to the analogue experiments performed to validate the

�ndings of the theoretical model. The ascent of tilted air-�lled cracks propagating

through layered gelatins was observed and the experimentalresults was quantita-

tively compared with the results of the numerical model.

The laboratory work presented in this chapter consist in three experiments:

� CASE 0: a tilted air-�lled crack propagates through a homogeneous layer

of gelatin until it reaches the free surface.

� CASE I: the tilted air-�lled crack starts the propagation from the bottom of

a rigid layer of gelatin and it enters in a compliant layer.

� CASE II: the tilted air-�lled crack starts the propagation in a compliant layer
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of gelatin and it reaches and passes the boundary with a more rigid gelatin

layer.

The path and shape of air-�lled cracks were measured from therecords of the ex-

periments. The parameters of the gelatin was measured and the numerical model

was set to that values to compare the output with the experimental observations.

In Chap. 5 the developed mathematical model and the analogueexperiments

are discussed and an overview on the implication of this workfor dike propagation

in the crust is presented. A paragraph with the future possibly development of the

mathematical model conclude this chapter.
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Chapter 2

Mathematical model

2.1 Oblique dislocations in a homogeneous medium

Let us consider a dislocation surface� , oriented according to the unit normaln

and bounded by a dislocation lineD, over which the displacementu suffers a

prescribed jumpb (termed as the Burgers vector): the dislocation condition may

be simply written I

L
dui = � bi (2.1)

whereL a closed contour encircling the dislocation lineD (Figure 2.1). In a

homogeneous isotropic elastic medium, the equations governing the equilibrium

con�guration of the surrounding medium can be written (e.g.Landau & Lifschitz,

1967):
1

1 � 2�
r (r � u) + r 2u = �̂ � b � (~� ) (2.2)

where� is the Poisson ratio of the elastic medium,�̂ is the unit vector alongD

and~� a 2D vector with origin onD, spanning a surfaceSL bounded by the contour

line L . It may be noted that the orientationn of the dislocation surface plays no

explicit role in the equilibrium equation (2.2): only the dislocation line appears

through its orientation̂� and the Burgers vectorb.

For a homogeneous unbounded medium, simple analytical solutions exist if

the dislocation surface is a half-plane (and the dislocation line is the straight line

bounding it). Three independent elementary dislocations may be considered, ac-

9
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S

n
b

tx

Figure 2.1:Scheme and notation employed to describe a dislocation surface

cording to the relative direction ofb; �̂ andn: a screw dislocation hasb parallel to

�̂ , an edge dislocation hasb perpendicular tô� andn, a tensile dislocation hasb

parallel ton and perpendicular tô� . In the following we shall restrict to consider

tensile and edge dislocations.

If �̂ is along they axis, a plane strain con�guration may be assumed and the

displacement �eld due to a vertically dipping tensile dislocation surface, withb

alongx, is

u(x)
x =

b(x)

2�

�
� +

1
2(1 � � )

xz
r 2

�
= b(x)gx(x; z)

u(x)
z = �

b(x)

4� (1 � � )

�
(1 � 2� ) ln r +

z2

r 2

�
= b(x)gz(x; z)

(2.3)

where the superscript(x) denotes the direction of the Burgers vector,r =
p

x2 + z2

and� 2 [� �; + � ] is the clockwise angle around they axis shown in Figure 2.2-a:

� =

(
�
2 + arctan z

x if x > 0

� �
2 + arctan z

x if x < 0
(2.4)

It is easily shown that� is continuous and differentiable ifz < 0, while it jumps

from � � to + � whenx changes sign, ifz > 0.
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b(n)
b(x)
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b(z)

(x  , z )1 1 (x  , z )1 1

(x  , z  )1 1

Figure 2.2: (a) A vertically dipping tensile dislocation has the same solution of an
obliquely dipping dislocation with horizontal Burgers vector, if � 0 is employed instead
of � . (b) A vertical edge (dip-slip) dislocations has the same solution of an oblique dislo-
cation with vertical Burgers vector, if� 0replaces� . Tensile (c) and edge (d) dislocations
on obliquely dipping surfaces may be written as linear combinations of type (a) and (b)
dislocations.

The solution for a vertical dip-slip dislocation withb alongz is

u(z)
x =

b(z)

4� (1 � � )

�
(1 � 2� ) ln r �

z2

r 2

�
= b(z)hx (x; z)

u(z)
z =

b(z)

2�

�
� �

1
2(1 � � )

xz
r 2

�
= b(z)hz(x; z)

(2.5)

where the superscript(z) denotes the direction of the Burgers vector.

Shifting the dislocation line fromx = z = 0 to x = x1; z = z1 simply

requires a translation of coordinates, which is obtained replacing x and z with

x � x1 andz � z1 in the previous formulas. Since the equations (2.1-2.2) do not

depend on the orientation of the dislocation surface, if thedislocation half-plane

dips at an arbitrary angle� 6= �
2 with respect to the horizontal planez = 0, the
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same equations (2.3-2.5) hold, provided that� is substituted by the angle� 0with

a jump discontinuity along the dipping half-plane; if the variablesn and s are

introduced (Figure 2.2a-b)

(
n = ( x � x1) sin � � (z � z1) cos�

s = ( x � x1) cos� + ( z � z1) sin �
(2.6)

(n is normal to the dislocation plane ands in the dip direction), we obtain

simply:

� 0 =

(
�
2 + arctan s

n ; if n > 0

� �
2 + arctan s

n ; if n < 0
(2.7)

It is to be noted that the strain and stress �elds are independent of the dip angle� ,

since� and� 0 have the same derivatives with respect tox andz.

However, after� is replaced by� 0, eq.n (2.3) provides the solution for a

Burgers vector alongx, which is no longer perpendicular to the dislocation sur-

face. Similarly, eq.n (2.5) still provides the displacement when the Burgers vec-

tor is alongz, which is no longer parallel to the obliquely dipping dislocation

surface. Accordingly, an obliquely dipping tensile dislocation, opening byb(n)

in the direction perpendicular to the dislocation surface,hasb(n)
x = b(n) sin� ,

b(n)
z = � b(n) cos� and the solution is

(
u(n)

x = b(n)gx sin� � b(n)hx cos�

u(n)
z = b(n)gz sin� � b(n)hz cos�

(2.8)

Similarly, a shear dislocation slipping byb(s) in the direction parallel to the

obliquely dipping dislocation plane, hasb(s)
x = b(s) cos� andb(s)

z = b(s) sin� ; the

solution for the displacement due to an inclined dip-slip dislocation is then

(
u(s)

x = b(s)gx cos� + b(s)hx sin�

u(s)
z = b(s)gz cos� + b(s)hz sin�

(2.9)
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2.2 Oblique dislocations in a layered medium

If the medium is composed by two half-spaces, endowed with different elastic

parameters, welded along the planez = 0, equations (2.3-2.5) must be replaced

by the solutions for elementary tensile and edge dislocations provided in Bonafede

& Rivalta (1999) and Rivalta et al. (2002) for a vertically dipping dislocation

surface. These solutions were obtained employing the solutions (2.3-2.5) in each

of the two half-spaces and employing an appropriate Love's strain function to

remove discontinuities which would appear in traction and displacement over the

welded interfacez = 0. These analytic solutions still contain terms proportional

to � , needed to ful�l the dislocation condition (2.1), and are written explicitly in

the Appendix A. Here we shall indicate them formally as:

(
u(x)

x (x; z; x1; z1; � = �
2 ) = b(x)gx (x; z; x1; z1)

u(x)
z (x; z; x1; z1; � = �

2 ) = b(x)gz(x; z; x1; z1)
(2.10)

for a vertical tensile dislocation, wheregx contains a term�
2� , and

(
u(z)

x (x; z; x1; z1; � = �
2 ) = b(z)hx (x; z; x1; z1)

u(z)
z (x; z; x1; z1; � = �

2 ) = b(z)hz(x; z; x1; z1)
(2.11)

for a vertical dip-slip dislocation, wherehz includes a term�
2� .

If a dipping dislocation surface in a layered medium is considered, the same

formulas still hold, provided only that� is replaced by� 0 in gx and inhz; we

write them as:

u(x)
i (x; z; x1; z1; � ) = b(x)g0

i (x; z; x1; z1; � )

u(z)
i (x; z; x1; z1; � ) = b(z)h0

i (x; z; x1; z1; � )
i = x; z:

In the following, it will be convenient to consider Burgers vectorsb(n) perpen-

dicular andb(s) parallel to the dislocation plane. If the former (normally opening)

con�guration is considered we haveb(n)
x = b(n) sin� andb(n)

z = � b(n) cos� , so
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that

u(n)
i (x; z; x1; z1; � ) = b(n) � [ g0

i (x; z; x1; z1; � ) sin � �

h0
i (x; z; x1; z1; � ) cos� ] ; i = x; z:

If the latter (dip-slip) con�guration is considered, we have b(s)
x = b(s) cos� and

b(s)
z = b(s) sin� , so that

u(s)
i (x; z; x1; z1; � ) = b(s) � [ g0

i (x; z; x1; z1; � ) cos� +

h0
i (x; z; x1; z1; � ) sin � ] ; i = x; z:

Finally, we can write the displacement �eld for a tilted elementary dislocation

with arbitrary Burgers vectorb as the sum of the displacement �elds due to it's

componentsb(n) perpendicular andb(s) parallel to the dislocation surface (see Fig.

2.3c,d). We have:

ui (x; z; x1; z1; � ) = b(n) � Gi (x; z; x1; z1; � ) +

b(s) � H i (x; z; x1; z1; � ) ; i = x; z:
(2.12)

where:

Gi = g0
i (x; z; x1; z1; � ) sin � � h0

i (x; z; x1; z1; � ) cos�

H i = g0
i (x; z; x1; z1; � ) cos� + h0

i (x; z; x1; z1; � ) sin �

A �nite (along dip) dislocation surface betweenx1; z1 andx2; z2, with Burgers

vectorb, is simply obtained subtracting from the solution (2.12) with dislocation

line in x = x1; z = z1 the same solution with dislocation line inx2; z2: such a

�nite dislocation surface will be termed “dislocation element”. If c is the half-

width of the dislocation element, andx0; z0 are the coordinates of its mid point,

c = 1
2

p
(x2 � x1)2 + ( z2 � z1)2

x0 = 1
2(x1 + x2); z0 = 1

2(z1 + z2)
;

we may write the displacement for a closed dislocation element of lengthl = 2c
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as:

uc
i (x; z; x0; z0; � ) = b(n) � � Gi (x; z; x0; z0; � ) +

b(s) � � H i (x; z; x0; z0; � ) ; i = x; z:
(2.13)

where:

� Gi (x; z; x0; z0; � ) = Gi (x; z; x1; z1; � ) � Gi (x; z; x2; z2; � )

� H i (x; z; x0; z0; � ) = H i (x; z; x1; z1; � ) � H i (x; z; x2; z2; � )

From the expression (2.13) we can easily calculate the deformation and the stress

�elds. For the stress tensor we obtain the expression:

� c
ij (x; z; x0; z0; � ) = b(n) � � S(n)

ij (x; z; x0; z0; � ) +

b(s) � � S(s)
ij (x; z; x0; z0; � )

(2.14)

where� S(n)
ij (x; z; x0; z0; � ) and� S(s)

ij (x; z; x0; z0; � ) are built following the same

procedure outlined above for the displacement �eld: we start from the stress �led

generated by a vertically dipping tensile (� (x)
ij ) and dip-slip (� (z)

ij ) semi-in�nite

elementary dislocations:

� (x)
ij (x; z; x1; z1) = b(x)s(x)

ij (x; z; x1; z1)

� (z)
ij (x; z; x1; z1) = b(z)s(z)

ij (x; z; x1; z1)

i = x; z: (2.15)

where theloading functionss(x)
ij (x; z; x1; z1) ands(z)

ij (x; z; x1; z1) are respectively

equals togi;j andhi;j (i.e. the derives inx andz directions of the functionsgi and

hi ) and are explicitly written in Appendix B.

For an obliquely dipping surface the stress �eld generated by a tensile (� (n)
ij ) and

dip-slip (� (s)
ij ) semi-in�nite dislocations are:
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� (n)
ij (x; z; x1; z1; � ) = b(n) [s0(x)

ij (x; z; x1; z1) cos� � s0(z)
ij (x; z; x1; z1) sin � ]

� (s)
ij (x; z; x1; z1; � ) = b(s) [s0(x)

ij (x; z; x1; z1) cos� + s0(z)
ij (x; z; x1; z1) sin � ]

i = x; z:

where the loading functionss0(x)
ij (x; z; x1; z1) and s0(z)

ij (x; z; x1; z1) are respec-

tively equals tog0
i;j and h0

i;j (i.e. the derives inx and z directions of the dis-

placement's loading functionsg0
i andh0

i ). It is easy to notice thatg0
i;j = gi;j and

h0
i;j = hi;j so that we can write:

� (n)
ij (x; z; x1; z1; � ) = b(n)S(n)

ij (x; z; x1; z1; � )

� (s)
ij (x; z; x1; z1; � ) = b(s)S(s)

ij (x; z; x1; z1; � )

i = x; z:

with

S(n)
ij = s(x)

ij (x; z; x1; z1) cos� � s(z)
ij (x; z; x1; z1) sin �

S(s)
ij = s(x)

ij (x; z; x1; z1) cos� + s(z)
ij (x; z; x1; z1) sin �

�nally, we obtain the solution for the stress �eld generatedby a closed dislocation

surface (eq. 2.14) subtracting the solution for a dislocation linex2; z2:

� S(n)
ij (x; z; x0; z0; � ) = S(n)

ij (x; z; x1; z1; � ) �

S(n)
ij (x; z; x2; z2; � )

� S(s)
ij (x; z; x0; z0; � ) = S(s)

ij (x; z; x1; z1; � ) �

= S(s)
ij (x; z; x2; z2; � )

(2.16)



2.3. CRACK MODEL 17

It must be noted that the tensorial functions(n)
ij ands(s)

ij do not depend on� because

they are obtained through differentiations and linear combinations of the functions

g0
i andh0

i , where� appears only in the term� 0, and it was already noted that� and

� 0 have the same derivatives with respect tox andz. This means that, in terms of

stress (and deformation too), the only parameters that characterise an elementary

dislocation, are the position of the dislocation line and the Burgers vector.

Finally, tractions acting on the dislocation plane are obtained from equation

(2.16) performing a rotation of coordinates by an angle� = �
2 � � according to

the usual rules of tensor algebra. In order to simplify the notation, we shall write

N n ; Sn for the normal and shear components� S(n)
nn ; � S(n)

ns due to a normally

opening dislocation element with Burgers vectorbn and N s; Ss for the normal

and shear components� S(s)
nn ; � S(s)

ns due to a dip-slip dislocation element with

Burgers vectorbs.

2.3 Crack model

In a “crack model” of a dike, the normal traction� and the shear traction� released

over the dislocation surface are prescribed instead of the Burgers vector. If a

normal traction� 0 and a shear traction� 0 were present before dike emplacement

and they drop to� 1 and � 1 after emplacement, crack opening must provide a

normal traction� 1 � � 0 = � � and a shear traction� 1 � � 0 = � � . We may easily

calculate the Burgers vector needed to generate these tractions at the mid point

(x0; z0) of a dislocation element (Figure 2.3-a):

8
<

:

bn N n + bs N s = � �

bn Sn + bs Ss = � �
(2.17)

where the stressesN n ; N s andSn ; Ss were introduced at the end of the previous

section. This linear2 � 2 system allows to calculate the tensile and shear compo-

nentsbn andbs of the Burgers vector when the stress drops� and� are assigned.

According to the boundary-element technique of solution, acrack may be ap-

proximated by a distribution of dislocation elements with different Burgers vectors

(to be determined) as sketched in Figure 2.3-b. The normal traction and the shear
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Figure 2.3: (a) Normal and shear tractions released at the mid-point of adislocation
element; (b) the boundary element approximation of a crack.

traction at the mid point of each dislocation element are setequal respectively to

� � and� � and, from these conditions, the Burgers vector is computed for each

dislocation element. Of course, the approximation is better if the discretisation is

�ner and a curved crack surface may be approximated if the dipangle� i is allowed

to vary.

2.3.1 Boundary element technique: a set of elementary inter-

acting dislocation

In the following mathematical model, a dike is represented as a crack, built ac-

cording to the boundary element technique. A boundary element crack is made

by N interacting dislocation elements (see Fig. 2.3), opening within an elastic

layered medium, under assigned stress (or pressure) condition, prescribed at the

centre of each dislocation element. The mathematical problem to be solved con-

sists in balancing the stress, produced by all theN dislocation elements at the

centre of each dislocation, with the assigned normal and shear stress drop at that
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point. So the2� 2 linear system in (2.17) generalises to a2N � 2N linear system:

8
>>>><

>>>>:

NX

j =1

�
bn

j N n
ij + bs

j N s
ij

�
= � � i

NX

j =1

�
bn

j Sn
ij + bn

j Ss
ij

�
= � � i

with i = 1; � � � ; N (2.18)

wherebn
j andbs

j are the normal and dip-slip components of the Burgers vectorof

thej -th dislocation element,� i and� i are the normal and shear tractions released,

at the mid-point of thei -th dislocation, andN n
ij , Sn

ij , N s
ij andSs

ij are the in�uence

coef�cients, i.e. the tractions computed at the mid-point of the i -th dislocation

(x = x i ; z = zi ), due to thej -th dislocation with mid-point in(x0 = x j ; z0 = zj ).

The linear system (2.18) is then solved with the additional constraintbn
j � 0,

since negative values ofbn would provide interpenetration of matter. In order to

ful�l this condition, we devise a simple iterative method that converges well for

our purposes.

2.3.2 Fluid �lled fractures

In the following we shall consider a �nite batch of magma, with assigned mass

M0, ascending through an elastic medium. During magma ascent,new fractures

develop above the top of the dike while dike walls come into contact again near

the bottom.

In a �uid-�lled dike, the normal stress after emplacement is� 1 = � pf (�uid

pressure) while the shear stress vanishes� 1 = 0, if the dike �lling �uid moves

slowly enough to neglect viscous friction on crack walls. Accordingly, we put

� = pf + � 0 = � P (� P is the “overpressure”) and� = � 0 in the r.h.s. of eq.n

(2.18).

For the sake of simplicity, we shall not consider any deviatoric component in

the initial stress �eld. More speci�cally, the initial normal stress� 0
i at the centre of

thei -th dislocation element, has the lithostatic gradient� � r g (proportional to the

density� r of the elastic medium and to the gravity accelerationg) while � 1
i has the

hydrostatic gradient� � f g (proportional to �uid density� f ). We take into account
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that �uid density may change according to dike volume in order to achieve mass

conservation. A reference con�guration is considered in which the overpressure

is assigned over the crack lengthL0 as

� P0(zi ) = ( � m � � 0) g � zi (2.19)

where � P0(zi ) is the over-pressure atzi , � r is the density of the embedding

medium,� 0 is the �uid density and� zi is the difference between the depthzB

of the bottom of the crack and the mid-pointzi of thei -th dislocation element (see

Figure 2.3).

We assume this as the reference con�guration, in which the overpressure van-

ishes at the bottom tip and the volume of the intrusion and itsdensity assume the

reference valuesV0 and� 0. We shall consider a nearly incompressible �uid, with

very high (but �nite) bulk modulusK f , so that� f is practically independent of

pressure changes (� f � � 0), while pressure is highly sensitive to volume changes,

according to

� PK = � K f
V � V0

V0
(2.20)

During propagation, any variation of the crack volume fromV0 to V implies a

�uid density variation;

� f = � 0 + � � f (2.21)

where

� � f = � � 0
V � V0

V
' � � 0

V � V0

V0
(2.22)

During propagation the overpressure is then

� P(zi ) = ( � r � � f ) g � zi + � PK (2.23)
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Figure 2.4: Overpressure in a �uid-�lled crack: (a) reference con�guration, with
overpressure� P0(zi ) = ( � r � � 0)g� zi ; (b) actual con�guration with overpressure
� P(zi ) = ( � r � � f )g� zi + � PK .

Substituting equations (2.19) and (2.21) in (2.23) we obtain:

� P(zi ) = � PK + � P0(zi ) � � � f g� zi (2.24)

For a boundary element crack, we can express the volumeV as:

V =
NX

j =1

l � bn
j (2.25)

wherel = 2c is the length of the dislocation elements constituting the crack. Note

that all volumes in our2D plane strain model, are meant per unit length along the

y axis.

By equation (2.25), we can express equation (2.20) as:

� PK = �
K f

V0
(

NX

j =1

l � bn
j ) + K f (2.26)
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and similarly, substituting (2.25) in equation (2.22), we obtain:

� � f = �
� 0

V0
(

NX

j =1

l � bn
j ) + � 0 (2.27)

Now, substituting in equation (2.24)� PK from (2.26) and� � f from (2.27), we

obtain:

� P(zi ) = � P0(zi ) + K f � � 0 g� zi + (2.28)

� (K f � � 0 g� zi )
l

V0
(

NX

j =1

bn
j )

Hence Eq. (2.18) becomes:

8
>>>><

>>>>:

NX

j =1

�
bn

j N n
ij + bs

j N s
ij

�
= � P(zi )

NX

j =1

�
bn

j Sn
ij + bs

j Ss
ij

�
= 0

with i = 1; � � � ; N (2.29)

whereN = L0=l. Substituting the over-pressure pro�le (2.28) in the linear system

(2.29) we obtain:

8
>>>>>>>><

>>>>>>>>:

NX

j =1

�
bn

j

�
N n

ij +
l(K f � � 0g� zi )

V0

�
+ bs

j N s
ij

�
=

= � P0(zi ) + K f � � 0 g� zi

NX

j =1

�
bn

j Sn
ij + bs

j Ss
ij

�
= 0

(2.30)

with i = 1; 2; � � � ; N

The linear system (2.30) can be further simpli�ed noting that, typically

K f � � 0 g� zi

since, for a km-long magma-�lled fracture, we haveK f ' 1010 Pa, and� 0 g� zmax
i '
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Figure 2.5:Model parameters employed to describe crack propagation.

3 � 103 � 10 � 103 = 3 � 107 Pa. Then, neglecting the term� 0g� zi in (2.30), we

obtain:

8
>>>><

>>>>:

NX

j =1

�
bn

j

�
N n

ij +
l

V0
K f

�
+ bs

j N s
ij

�
= � P0(zi ) + K f

NX

j =1

�
bn

j Sn
ij + bs

j Ss
ij

�
= 0

(2.31)

with i = 1; 2; � � � ; N

The growth and propagation of the dike is modelled iteratively, by adding a dis-

location element at the top of the �uid-�lled crack and deleting, if this is the case,

dislocation elements withbn
i � 0 at the bottom. When this happens, the stress

intensity factor vanishes at the bottom end: this assumption agrees with the fact

that the elastic medium is left fractured after the crack passage and cannot sustain

any tensile stress (see Fig. 2.4b).

At each step of our iterative mathematical model, we re-evaluate the pressure

pro�le in order to calculate the new equilibrium con�guration of the crack. Fluid-

dynamic effects are not considered, since the model describes the propagation
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path as a sequence of static equilibrium con�gurations; this should be a reasonable

approximation if the propagation velocity and the �uid viscosity are low.

As far as the crack is far away from the rigidity discontinuity in z = 0, the

volume increase due to the opening of a new dislocation element at the top, is

accompanied by a simultaneous, uniform, pressure drop thatinduces the closing

of the bottom dislocation element. When the crack is close toa rigidity disconti-

nuity, the number of closing dislocations at the bottom, foreach new dislocation

opening at the top, may vary depending on the rigidity contrast r = � 2=� 1. If the

crack migrates toward a higher rigidity layer (r > 1), it may happen that no dislo-

cation closes at the bottom since the length of the dike has toincrease in order to

conserve the mass of the intrusion, due to the minor opening (lower bn
i ) near the

high rigidity layer. If the crack moves toward a lower rigidity layer (r < 1) the

opposite may happen (more than one dislocation may close at the bottom for each

new dislocation opening at the top).

2.3.3 An energetic criterion for propagation

We calculate the energy release during propagation as the difference between the

strain energy and the gravitational energy in two consecutive con�gurations. Prop-

agation is allowed if the energy release exceeds a speci�c fracture energy thresh-

old (i.e. the energy required to fracture the new surface).

The strain energy per unit length alongy, corresponding to a fracture with

lengthL = N � l (Aki & Richards, 1980, p. 55-56) is:

W(L) =
NX

i =1

l
2

(� n
i � bn

i + � s
i � bs

i ) (2.32)

At the next iteration, we add a dislocation element of lengthl at the top of the

fracture. The strain energy will be:

W(L + l) =
N +1X

i =1

l
2

�
� n

i
0 � bn

i
0+ � s

i
0 � bs

i
0� (2.33)

where primes indicate terms computed at equilibrium of the new con�guration
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(with N + 1 dislocation elements). The speci�c strain energy release is � W =

[W(L) � W(L + l)]=l, which is positive if the strain energy decreases. Note that

in a homogeneous unbounded medium, in absence of external stress of tectonic

origin, a �uid-�lled fracture, with the condition of vanishing stress intensity factor

at the bottom, propagates maintaining its length and shape.Indeed, in this case,

we obtain, from our model:

bn
1

0 = 0 and bn
i

0 = bn
i � 1; � n

i
0 = � n

i � 1 for i � 2

Thus,W(L) = W(L + l) and� W = 0, so that the crack would not propagate

spontaneously if only the strain energy were considered. This shows the need for

considering also the gravitational energy release. However, if the hosting medium

is layered, with a discontinuity in the elastic parameters,we obtain� W > 0 if

the propagation is toward the lower rigidity layer and� W < 0 if the propagation

is towards the higher rigidity.

On the contrary, the release of gravitational energy is always positive if the

�uid-�lled fracture propagates upward and the density of the intrusion is lower

than the density of the hosting medium. In terms of the gravity potential (which

is de�ned up to a constant term), the upward propagation of a low density intru-

sion within a higher density medium is equivalent to the upward propagation of

a negative mass. For a fracture with lengthL = N � l the gravitational energy,

calculated up to an arbitrary constantK , is:

G(L) = K + g� �
NX

i =1

(l � bn
i � � zi ) (2.34)

where � � = � f � � r , g is the gravity acceleration,l � bn
i is the volume (per

unit length) of thei th dislocation element (that hosts �uid instead of the elastic

medium) and� zi is the difference between the bottom of the crackzB and the

depthzi of the centre of thei th dislocation element (see Fig. 2.5):

� zi =
l
2

iX

j =1

(sin � j � 1 + sin � j )
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with � j the dip angle of thej th dislocation element and� 0 conventionally chosen

equal to zero, so thatsin� 0 = 0.

At the next iteration we add a dislocation element of lengthl at the top of the

fracture. The gravity potential is then:

G(L + l) = K 0+ g� � 0
N +1X

i =1

�
l � bn

i
0 � � zi

�
(2.35)

where� � 0 = � 0
f � � r . Again, primes indicate terms computed at the equilibrium

of the new con�guration.

Note that the constantK 0 in the (2.35) in not necessary equal toK (in eq. 2.34):

in particularK = K 0only if the total volume per unit length of the dikeV is equal

to the new volumeV 0 (with V andV 0according to eq. 2.25). In this case we have

also� � = � � 0. De�ning the speci�c gravitational energy release (positive if the

energy decreases) as� G = [ G(L) � G(L + l)]=l we simply obtain:

� G = g� �
N +1X

i =1

� zi

�
bn

i � bn
i

0�

In general, ifV 0 6= V, we have to consider two contributions in order to re-write

eq. (2.35) up to the same constant of the (2.34): (i) the variation in the density of

the intrusion; (ii) the redistribution of mass in the housing rocks due to the volume

change in the dike. The �rst contribution was already introduced by considering

the new density� � 0 de�ned by eq. (2.22). The second contribution should con-

sider variations in the density of the host rocks. Rigorously we should calculate

the deformation �eld generated by the dike in order to compute, as a function of

the coordinates(x; z), the deviation (with respect to the previous con�guration)

in the density of the host rocks. By integration of the “deviated density �led” we

should obtain a termk = g
Z

z [� r (x; z) � � r
0(x; z)] dxdz that allows us to write

K 0 = K + k.

An approximation that simplify the calculation ofk can be introduced by the

following consideration. If we do not consider this termk and simply assume

K = K 0, we introduce an error in� G corresponding to the loose of a mass�m

equal to the volume variation of the dike� V = V � V 0 with the density of the
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rocks� r . A good estimation ofk can be obtained considering�m as uniforming

re-distributed around the dike. With this approximation wecan write:

k = g� r

N +1X

i =1

�
l � � bn � � zi

�

with

� bn =
1

N + 1

N +1X

i =1

(bn
i � bn

i
0)

now we can write the eq. (2.35) withK 0 = K + k:

G(L + l) = K + � � 0g
N +1X

i =1

�
l � bn

i
0 � � zi

�
+ g� r

N +1X

i =1

�
l � � bn � � zi

�
(2.36)

and we obtain the speci�c gravitational energy release,� G = [ G(L)� G(L+ l)]=l,

using eq. (2.36) and (2.34):

� G = g
N +1X

i =1

� zi

�
� � � bn

i � � � 0 � bn
i

0 � � r � bn
�

(2.37)

In the previous sections we have never considered density layering in the host

rocks. The introduction of density strati�cation in the mathematical model do not

change any theoretical consideration developed since now unless the introduction

of a density� r dependent from the depthz. The presence of an interface between

layers with different densities introduce a term� Gint in the calculation of the

speci�c gravitational energy release due to the displacement of the interface. This

contribute can be calculated as:

� Gint = � � 1� 2 � g
Z + 1

�1
� [u(x; z = 0) � u0(x; z = 0)] dx (2.38)

where� � 1� 2 is the difference between the density of the lower and upper layer re-

spectively,u(x; z = 0) is the displacement at the interface and the prime indicates

again terms calculated at the equilibrium of the new con�guration. The minus
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inside the integral is due to the choice ofz axis in downward direction. Equation

2.38 can be easily discretised in order to be computed in our numerical code.

Now we can generalise eq. 2.37 for density layering adding the term� Gint due

to the interface displacement and writing� � and� r as functions ofz:

� G = g
N +1X

i =1

� zi

�
� � (z) � bn

i � � � 0(z) � bn
i

0 � � r (z)� bn
�

+
� Gint

l
(2.39)

The speci�c total energy release (per unit advancement of the crack tip) is the

sum of the two contributions� W and� G:

� E = � W + � G (2.40)

As said at the beginning of this section, propagation is allowed if this energy

exceeds a speci�c fracture energy threshold per unit lengthening. This threshold

ET can be estimated as (Dahm, 2000b):

ET = K 2
c

1 � �
2�

(2.41)

whereK c is the fracture toughness. Elastic-brittle materials follow the relation:

K c = 2 �
p

 s� (1 + � ) (2.42)

(see Grif�th, 1920; Menand & Tait, 2002) so that:

ET = 2(1 � � 2) s (2.43)

where s is termed “speci�c surface fracture energy” which depends only on the

composition and temperature of the elastic solid.

2.3.4 Direction of propagation

In order to choose the direction of fracture propagation, weopen a test dislocation

element in different directions and calculate the energy release for each of these

con�gurations (see Fig. 2.5). We choose the direction that maximises the energy



2.3. CRACK MODEL 29

release and allow the propagation in this direction only if the energy release ex-

ceeds the fracture energy threshold (as discussed in the previous paragraph). If

� N is the dip angle of the last dislocation element at the top of the crack, we try

5 different directions of propagation by the opening of a test dislocation with dip

angle of:

� N +1 = ( � N � 2� ); ( � N � � ); � N ; (� N + 2� ); ( � N + 2� )

where� is chosen in the range of[2� ; 5� ], depending on the numberN of elements

constituting the crack (usuallyN is in the range of40� 80elements), in order to

obtain a stable path for the crack propagation.
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Chapter 3

Numerical results

In order to isolate the in�uence of the elastic discontinuity on the path followed

by the crack, we show in section 3.1 results obtained withoutintroducing any

external (tectonic) stress or density strati�cation in thehosting rocks and show

our mathematical results for a vanishing energy threshold (CASE 0 - 1 and 2).

Dikes start to propagate far enough from the transition so that initially they do

not suffer the presence of the discontinuity. We set model parameters to typical

sub-crustal values (see Table 3.1). In section 3.2 we show results obtained with

density and/or rigidity strati�cation (CASE 3 - 4 and 5). In this cases we set the

mathematical model to three signi�cant geological con�guration (see Table 3.3).

In section 3.3 we introduce in the housing medium a weak surface at the interface

separating different rocks (CASE 6 - 7 and 8).

During propagation we conserveM0 = V0 � � 0 that represents a mass-per unit

length in our 2D model. The output of the mathematical model provides: (i) crack

propagation path; (ii) crack shape, (iii) stress changes and displacements induced

in the medium, (iv) energy release per unit lengthening during propagation.

3.1 Rigidity strati�cation

Before showing the results obtained for the transition froma stiff to a compli-

ant medium (CASE 1) and the inverse con�guration (CASE 2), weconsider the

simplest possible con�guration: a tilted dike propagatingin a homogeneous un-

31
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� 0 = 2600 kg/m3 V0 = 3 � 10� 3 km2 K f = 10 GPa
� r = 3300 kg/m3 1:5 � � � 30 GPa � = 0:25

Table 3.1:Parameters used in CASE 0, 1, 2:� 0, V0 andK f are the reference density,
volume (per unit length) and Bulk modulus of the �uid intrusion, � r , � and � are the
density, rigidity and Poisson ratio of the host rock.

bounded medium under the effect of gravity (CASE 0).

In all the cases we set the parameters of the mathematical model to the values

reported in Table 3.1. The results for CASE 1, 2, and 3 are summarised in Table

3.2.

3.1.1 CASE 0 (Homogeneous Medium)

We show in Fig. 3.1 the output of the model for CASE 0: the path followed by

the dike, its shape (Fig. 3.1-a) and the speci�c energy release (Fig. 3.1-b). In this

case we choose a uniform rigidity� = 30 GPa and an initial length for the dike of

2:70km with the other parameters set according to Table 3.1. Notethat we impose

an initial length for the fracture that is found to be less than L0 (the reference

length providing vanishing overpressure at the bottom tip for the assigned volume

V0). This choice implies that the initial volume comes out to beless than the

reference volumeV0 and, as a consequence, we have a very high initial positive

contribution� PK to the pressure� P(zi ) (see eq. 2.23 and Fig. 2.4-b). Such an

internal pressure provides a quasi-elliptical initial shape (see Fig. 3.1-a1), that in

general will be far from the characteristic tear-drop shape, since the contribution

� PK is very high with respect to the buoyancy terms. In this initial con�guration,

the stress intensity factors at both tips of the dike are positive, and this should

provide crack extension in both directions. We allow crack growth only at the

upper tip but this assumption is inessential in a homogeneous in�nite medium if

the lengthening of the dike is straight (as may be checked “a posteriori”). The term

� PK becomes quickly smaller during crack growth, sinceV increases, so that the

contribution of buoyancy terms to the stress drop becomes dominant. In Figure

3.1-a2, the length is3:96km and the drop-shape is not fully attained, yet. The �nal

characteristic tear-drop shape has a length of4:98 km (Figure 3.1-a3 and 3.1-a4)
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and remains constant (in the homogeneous case we are considering) during the

subsequent propagation, with positive� G and vanishing� W (see Figure 3.1-b).

The path followed by the crack is a straight line: this behaviour can be easily

and intuitively understood at the beginning of the growth phase. In fact, since the

deformation energy release� W dominates with respect to the gravitational term

� G (see Figure 3.1-b), we expect the opening of the new dislocation at the upper

tip in the same direction of the crack's dip angle, in order tooptimise the mutual

interaction between the dislocation elements (or maximisethe tensile stress acting

on each of them), which drives the opening of the crack.

When the contribution of the gravitational energy� G becomes greater and domi-

nates in driving the propagation, it might be expected that the crack should deviate

toward the vertical direction, in order to open the new dislocation in a higher point

and optimise the gravity potential drop. Instead, even considering only the grav-

itational energy, the path chosen results to be rectilinearalong dip. This can be

understood considering that the gravitational energy release is larger if more mass

is displaced to shallower depth. Owing to mutual interaction among elementary

dislocations, crack opening (and mass shift) is maximum forrectilinear fracture

lengthening while a deviation toward the vertical would provide less mass shifted

to slightly shallower depth. Actual computation shows thatthe maximum total

energy release, in a homogeneous medium, is obtained in the former case.

3.1.2 CASE 1

In this case the rigidity of the lower elastic half space is� 1 = 30 GPa while

the rigidity of the upper half space is� 2 < � 1. We de�ne as rigidity contrast

r = � 2=� 1 and show the results of our simulations varying the rigiditycontrast

according to the valuesr = f 0:8; 0:6; 0:4; 0:2; 0:05g.

The typical rigidity contrasts that we can encounter in natural cases can reach

a ratio of an order of magnitude in case of contact between layers of basaltic

rocks (� ' 30GPa) and sandstones (� ' 3 GPa). The same order for the rigidity

ratio is obtained considering a transition from basalt to tuff or pyroclastic sedi-

ments. A rigidity ratio between 0.5-0.3 can be observed at the boundary between

granitic crust and sandstones. Lower contrasts are typically inferred at the Moho,



3.1. RIGIDITY STRATIFICATION 35

•8

•6

•4

•2

0

2

4

6

8

10

12

14

z 
(k

m
)

•12 •10 •8 •6 •4 •2 0 2 4 6 8 10 12

x (km)

Path

z 
(k

m
)

 

•2

0

2

4

•4 •2 0 2

•2

0

2

4

•4 •2 0 2

•2

0

2

4

•4 •2 0 2
x (km)

 0

10

20

30

•2•10123
z top (km)

•6

•4

•2

0

2

4

6

r = 0.8
r = 0.6
r = 0.4
r = 0.2
r = 0.05

D
E

 (
M

P
a×

m
)

M
P
a

sn (MPa)

DW

DG

DEtot

(b1) (b2)

(b3) (b4)

(a)

m  = 30 GPa1
n  = 0.251

n  = 0.252

m  = r m2 1

Figure 3.2: CASE 1: propagation of a45� dipping, �uid-�lled fracture, in a layered
elastic medium. Panel (a): energetically preferred path and initial and �nal shape of the
dike (opening exaggerated by a factor500) for different rigidity contrasts. In all these
simulations we used an initial number of dislocation elements N = 71 and a test angle
� = 2 � . Panels (b1) – (b3): energetically preferred path (dashed line), shape of the dike
(exaggerated by a factor500) and normal stress induced in the medium forr = 0 :2. Panel
(b4): diagram of the speci�c total energy release, plotted as functions of thez-coordinate
of the top of the dike.



36 CHAPTER 3. NUMERICAL RESULTS

in which the purely elastic ratio can reach values' 0.5. In the case of the Moho,

an important role could be played by the effective rigidity felt by the dike, due to

viscoelastic properties of the mantle (Eissa & Kazi, 1988).

The initial crack length is chosen equal to the “equilibrium-length” of prop-

agation, obtained when the stress intensity factor vanishes at the lower tip (as

already discussed for CASE 0).

In Figure 3.2-a we show the path of the crack and its initial and �nal shape for

different rigidity contrasts. The most interesting feature consists in a change of

the direction of propagation near the boundary separating different rigidities. The

energetically favourite path provides a sort of refractionangle due to the in�u-

ence of the elastic discontinuity. In particular, passing from a stiff to a compliant

medium, this model shows a greater deviation toward the vertical direction if r

is lower. Note that the dike in�ates and shortens considerably after crossing the

interface.

In Figure 3.2-b we zoom on a particular con�guration (r = 0:2). We highlight

changes in the shape of the dike approaching and crossing theboundary separating

a stiff (� 1 = 30 GPa) from a compliant medium (� 2 = 6 GPa). We can observe

also the stress change induced in the medium by the dike (Fig.3.2, panels b1 -

b2 - b3): in particular we can notice how the boundary is affected initially by a

tensile stress and then by a compressive stress concentrating under the transition

boundary. We plotted the normal stress in the dike referenceframen; s (when the

dislocation surface is not straight we consider the averagedip as the direction of

thes axis).

In Figure 3.2, panel (b4), we show the speci�c energy releasein the case

r = 0:2: that will help us in interpreting the results obtained for the energet-

ically preferred path. The deviation towards the vertical direction is well under-

standable considering that: (i) the elastic deformation energy decreases (then� W

increases) approaching a compliant medium and, as a consequence, a deviation in

the direction of a shorter path joining the crack to the compliant half space is

preferred; (ii) the presence of a compliant medium, favoursthe opening of the up-

per dislocation elements, very close to the boundary transition; a greater opening

of the uppermost dislocations implies an upper translationof the crack's centre

of mass with higher release of gravitational energy. We evaluate the two energy
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terms� W and� G separately. In this case we can immediately observe that the

deformation energy release is almost null unless the dike isclose to the transition

surface and its contribution is almost an order of magnitudeless than the gravi-

tational contribution. The gravitational energy is dominant in driving the path of

propagation across the elastic discontinuity, but it depends strongly on the elastic

properties of the medium since, close to the boundary, the dike volume and shape

change (in�uencing the overpressure through� PK and displacing the centre of

mass). Even if� W � � G, the elastic deformation contribution is not negli-

gible: very close to a discontinuity in the elastic parameters (especially for low

dip angles, low density contrast or other particular conditions, see also CASE 2)

the differences of gravitational energy, between the energy release obtained for

different directions of propagation, are of the same order as the elastic deforma-

tion differences and the elastic contribution becomes important for the direction

of propagation.

In Figure 3.3 we show the speci�c energy release� E = � W + � G as a

function of the vertical coordinate of the upper tip of the dike. It is interesting

to notice (i) the constant rate of energy release during the straight propagation

(far from the elastic discontinuity); (ii) the sharp peak (much higher for lowerr )

when the crack approaches the boundary of the compliant medium; (iii) the higher

level of energy release until even the bottom tip of the crackhas crossed the in-

terface. These numerical results may help explaining (at least qualitatively) the

observations of velocity variations in analogue models andagree with theoreti-

cal models studying the velocity of �uid-�lled fractures inhomogeneous media,

where the internal �uid dynamics is considered: indeed, a constant energy release

rate means a constant velocity considering a constant viscous dissipation during

the motion (consistent with our results far from the elasticdiscontinuity); the peak

in energy release means a sharp acceleration (the higher energy release is avail-

able to increase the kinetic energy of the dike �lling �uid) that is consistent with

the observation of �uid-�lled fractures in layered gelatin(Rivalta et al., 2005, Fig.

4).
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3.1.3 CASE 1b (Free Surface)

Now we consider the propagation of the dike in a homogeneous half space with

a rigidity � = 30 GPa, bounded by a free surface inz = 0. These results are

obtained setting model parameters as in CASE 1, apart from� 2 = 0 (r = 0).

In Figure 3.4 we show in panels (a) - (b) - (c) the path of the crack, its shape

and the stress induced in the elastic medium. The path followed by the crack is a

straight line that ends with a deviation toward the verticaldirection, affecting only

the uppermost dislocation elements (hardly appreciable inthe �gure). In fact, this

deviation, as in CASE 1, starts very close to the free surface: in this simulation we

have a dike of4:95 km length and we obtain a deviation from45� to 60� for the

dip angle, concentrated mostly in the shallowest200m of propagation (from500

to 200m depth the dip angle changes only from45� to 48� ). On the contrary, the

dike length is in�uenced by the free surface even at depths ofthe same order of the

dike length: at the beginning of this simulation (4:00km depth) the length of the

dike is reduced by1%in with respect to the length in an unbounded medium;1:1

km depth it is shorter by5%and at550m by10%. The �nal length obtained in the

simulation (at20m depth) is25%less than the length obtained in a homogeneous

unbounded medium. In the last panel of Figure 3.4 we show the gravitational

and deformation energy contributions to the total energy release: even in the half-

space the deformation energy release does not vanish (as it does in CASE 0), it is

always much smaller than the gravitational contribution. Again, it is evident that

the gravitational contribution increases signi�cantly near the surface because the

elastic response of the medium yields an increasing crack opening (and decreas-

ing length) so that the centre of mass of the intrusion is displaced upward more

than the upper tip.

The higher energy release close to the free surface explainsthe acceleration ob-

served in gelatin experiments (Rivalta & Dahm, 2006), according to the arguments

given at the end of the previous section.

3.1.4 CASE 2

In CASE 2 the rigidity of the upper medium is� 2 = 30 GPa. In this case we

shall consider numerical values of the rigidity contrastr = f 1:25; 1:66; 2:5; 5; 20g
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(reciprocal of CASE 1).

In Figure 3.5-a we show the path of the crack passing from a compliant to a

stiffer medium. In this case we obtain a deviation toward thehorizontal direction

that is greater for a higher rigidity contrast; this effect,for differences of about

an order magnitude in the rigidities, arrests the propagation: the dike assumes a

lens shape along the interface (r = 5 andr = 20) and the stress intensity factor

vanishes at both dike tips (in agreement with the assumptionof vanishing fracture

threshold). In this CASE 2 we observe an opposite (but greater) de�ection with

respect to CASE 1. This may be understood in the following terms: once the crack

enters the stiffer medium, the test dislocation opens widerif it de�ects toward the

interface; the de�ection continues until the whole crack has crossed (and the crack

gets longer when entering a stiffer medium).

In Figure 3.5, panels (b1) - (b2) - (b3), we highlight changesin the shape of

the dike approaching and crossing the boundary separating acompliant (� 1 = 12

GPa) from a stiffer medium (� 2 = 30 GPa) for whichr = 2:5. While approaching

and entering the stiffer medium, the normal stress increases due to the higher

rigidity. In panel (b4), we show the contributions of gravitational and deformation

energy to the total energy release: as in the previous cases,the magnitude of the

deformation energy is much lower than the gravitational contribution. Anyway,

as already noted for CASE 1, the gravitational energy is strictly connected to the

dike shape which is governed by the elastic parameters and the variations of� W

may be important in driving the direction of propagation. The deviation toward

the horizontal direction is again understandable considering that: (i) the elastic

deformation energy increases (� W decreases to negative values) approaching a

stiffer medium; as a consequence, a deviation in the direction of the compliant half

space is preferred; (ii) near the rigidity transition, the gravitational energy release

decreases due to the less opening of the crack's head (and theconsequent less

advancement of the centre of mass) caused by the reaction of the stiffer medium.

In Figure 3.6, panels (a) - (b) - (c), we show changes in the shape of the dike

approaching and crossing the boundary separating a compliant (� 1 = 6 GPa) from

a stiffer medium (� 2 = 30 GPa) for whichr = 5. Approaching and entering into

the stiffer medium the normal stress increases due to the higher rigidity. In the

�nal con�guration, when the dike assumes a lens shape in the horizontal position,
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r � in � fn � l in (km) l fn (km) N in N fn

CASE 1b 0 45� 60� � 1� 4.95 3.75 99 75
CASE 1 0.05 45� 69� � 2� 4.97 1.68 71 24

0.2 45� 63� � 2� 4.97 2.66 71 38
0.4 45� 59� � 2� 4.97 3.43 71 49
0.6 45� 55� � 2� 4.97 3.99 71 57
0.8 45� 49� � 2� 4.97 4.55 71 65

CASE 0 1 45� 45� � 2� 2.70 4.98 45 83
CASE 2 1.25 60� 58� � 2� 4.32 4.68 72 78

1.66 60� 49� � 2� 3.91 4.90 71 89
2.5 60� 20� � 2� 3.43 6.30 49 90
5 60� sill � 1� 2.76 6.04 69 151
20 60� sill � 2� 1.72 3.24 43 81

Table 3.2:Results of the numerical model and initial (assumed) and �nal (computed)
values of dike parameters.

the stress decreases due to the low internal overpressure. Again we plotted the

normal component of the stress tensor in the dike reference frame. In Figure 3.6

panel (d) we show the energy release as a function of the curvilinear abscissa (the

path length starting from the upper tip in the initial con�guration) normalised to

its value when the crack crosses the transition boundary. When the crack assumes

a low dip angle, the strain energy becomes dominant in driving the dike toward its

�nal con�guration.

In Figure 3.7 we show the total energy release as a function ofthe coordinate

of the upper tip. The total energy release decreases sharplyfor higher rigidity

contrasts. For moderate rigidity contrasts (r = 1:25; 1:66; 2:5) the propagation

continues in the stiffer medium and the energy has a sharp local minimum in cor-

respondence of the interface. The dike stops when� E = ET , what occurs even if

the thresholdET vanishes whenr = 5 andr = 20. If ET > 0, dike arrest may oc-

cur, typically close to the interface, for lower rigidity contrasts. These results are

con�rmed by experimental observations showing that �uid-�lled fractures may

stop in proximity of a transition to higher rigidity (Rivalta et al., 2005, Fig. 5).
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3.1.5 Coulomb failure function and principal stresses close to

an elastic discontinuity

An important aspect associated with dikes ascending in the crust is the seismicity

due to the stress perturbation induced in the hosting mediumby the dike's upper

tip. This seismicity allows to localise a dike during the ascent and informs about

its velocity and direction of propagation. Here I plot the Coulomb failure function

(Cff) and calculate the axis relative to the maximum and minimum eigenvalues of

the stress �eld induced by a dike in an elastic medium with a rigidity discontinuity.

For each of the con�guration proposed in section 3.1 I show results for a vertical

(Fig. 3.8) and an inclined dike (Fig. 3.9). I used the simplest formulation for the

Cff, de�ned as:

Cf f = j� xz j + f � � xx

wheref is the friction coef�cient and I tookf = 0:7.

I plot the maximum Cff calculated on optimally oriented faults on planes perpen-

dicular to the (x,z). I show also the maximum tensile (green lines and circles)

and compressive (blue lines and circles) stress direction.From the Anderson the-

ory of faulting, the dip angle of an optimally oriented fault(on which the Cff

is maximum) deviates from the direction of the minimum stress eigenvector of

� 1
2 arctan(f � 1).

In Fig. 3.8 a vertical dike of 5 km length opensa) in a homogeneous medium;

b) in a half-space at 1 km depth;c) in a medium with rigidity of 30 GPa at a

distance of 1 km to the boundary separating a medium with rigidity of 12 GPa;d)

the same as c) with inverse rigidities. Note that in Fig. 3.8 any external stress was

considered in the medium, the Cff refers only to the stress �eld generated by the

dike. In the homogeneous medium (Fig. 3.8-a) the maximum compressive stress

over the upper tip of the dike is perpendicular to the (x,z) plane. In fact on the dike

surface (x = 0) � xx = � zz so that the minimum stress component results� yy =

� �(� xx + � zz). Note that on this plane I decided to plot the maximum eigenvector as

horizontal, but this is an arbitrary choice: the maximum is equal on every direction

in the plane (x,z). Near the planex = 0 we have that� xx and� zz are both positive
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Figure 3.8:Maximum Coulomb failure function on optimally oriented faults on planes
perpendicular to the (x,z) for a vertical dike of 5 km length opening in a homogeneous
medium (a), in a half-space (b), in a layered medium (d) and (e). Eigenvectors relative to
the maximum (green) and minimum (blue) eigenvalue of the stress �eld due to the dike
opening are plotted as lines if they are on the (x,z) plane or circles if they are perpendicular
to (x,z).



48 CHAPTER 3. NUMERICAL RESULTS

Figure 3.9:Maximum Coulomb failure function on optimally oriented faults on planes
perpendicular to the (x,z) for a 45� dipping dike of 5 km length opening in a homogeneous
medium (a), in a half-space (b), in a layered medium (d) and (e). Eigenvectors relative to
the maximum (green) and minimum (blue) eigenvalue of the stress �eld due to the dike
opening are plotted as lines if they are on the (x,z) plane or circles if they are perpendicular
to (x,z).
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and similar, so that again� yy results the minimum eigenvalue. It is interesting to

notice that the uncertainty in the direction of maximum tensile stress is removed

by the asymmetry introduced by free surface or the interfacewith a stiffer or

compliant medium. In Fig. 3.8-b and 3.8-c, on the planex = 0, the horizontal is

effectively the direction of maximum tensile stress, in fact the presence of the free

surface and of the compliant upper layer respectively, makethe� zz component of

the stress tensor lower than� xx (the effective rigidity inz direction is lower than

in x direction). The opposite happens in the forth con�guration(Fig. 3.8-d) were

the effective rigidity inz direction is higher than inx direction, consequently the

maximum eigenvalue is� zz and the tensile eigenvector is vertical. Looking at the

Cff values, it is clear that faulting is favoured by the presence of a free surface

or of a compliant upper layer. In this cases we expect shear fractures on planes

inclined of an angle� � 1
2 arctan(f � 1) (' 60� for f = 0:7) with respect to the

vertical in the region where the Cff positive values are higher (approximately a

line dipping at 40� – 50� from the surface to the dike upper tip).

In Fig. 3.9 a 45� dipping dike of 5 km length opens in the same con�gurations

described above. Again an uncertainty for the direction of the maximum tensile

axis is found in the homogeneous medium (Fig. 3.9-a) on the dike plane. Again

I choose arbitrarily to plot the maximum eigenvectors on thecrack surface per-

pendicular to the dipping direction of the dike. In the othercases the uncertainty

is removed by the asymmetry introduced by free surface or theinterface with a

stiffer or compliant medium. In Fig. 3.9-b and Fig. 3.9-c is interesting to notice

that the direction of maximum tensile stress, near the tip ofthe dike, does not re-

sults exactly perpendicular to the crack plane (as for a vertical dike) but tends to

be parallel to the free surface (or interface). Moving away from the dike tip, on

the crack plane, the maximum tensile stress becomes completely horizontal and

continues its rotation overpassing thex direction.

The orientation of the maximum eigenvector of the stress �eld has a fundamental

relevance for dike propagation: it is ascertained that the direction of propagation

of a dike in an external stress �led tends to progressively deviate to the perpen-

dicular direction with respect to the maximum tensile stress (see Watanabe et al.,

2002). This rule seems to be applicable also to the stress �eld generated by the

own dike. In fact, considering the behaviour of the maximum eigenvector on the
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dike plane shown in Fig. 3.9-b and 3.9-c (and described above) and considering

that the dike path, in presence of an external stress �eld, de�ects to the perpendic-

ular to the maximum tensile stress, we expect a deviation to the vertical direction

for dikes that propagate to the free-surface or to the interface with a compliant

medium (as predicted by the numerical results shown in the sec. 3.1.2 and 3.1.3).

Moreover the opposite behaviour of the maximum tensile stress is shown in Fig.

3.9-d, where the upper layer is more rigid and the tensile eigenvector suggests the

horizontal as favourite direction of propagation (as demonstrated in sec. 3.1.4).

Again, looking at the Cff values, it appears clear that the presence of the free sur-

face or of the compliant upper layer favours fracturing of the host medium. In this

cases we expect shear fractures on planes inclined of an angle � 60� with respect

to the compressive eigenvectors. In the red region of Cff, moving from the tip

of the dike to the free surface (or interface), compressive axis dip from� 45� to

� 90� (approximately on a line dipping at 30� – 40� from the dike upper tip to the

surface).

3.2 Density and rigidity strati�cation

In this section we show results obtained considering a medium with density and

rigidity layering.

We consider three different con�gurations: we start with the transition from a

higher to a lower density layer, without introducing any rigidity transition in or-

der to isolate the effect of the density layering (CASE 3); then we consider the

same density con�guration adding a rigidity transition from a stiff to a compliant

medium (CASE 4). Finally we show the opposite con�guration with transition

from low to higher densities coupled with a rigidity transition from a compliant to

a stiffer medium (CASE 5).

For each of the following cases we set the parameters of the mathematical

model to the values reported in Table 3.3. The results for CASE 3, 4, and 5 are

summarised in Table 3.4.
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Figure 3.10:CASE 3: propagation of a45� dipping, �uid-�lled fracture, in an elastic
media with a density strati�cation of the type� 1 > � 2 > � 0 (where� 0 is the density of
magma and� 1 and� 2 are the densities of lower and upper medium respectively). Panels
(a), (b) and (c): energetically preferred path (dashed line), shape of the dike (exaggerated
by a factor500) and modulus of the displacement �eld. Panel (d): total speci�c energy
release plotted as function of thez-coordinate of the top of the dike. The blue horizontal
dashed line represents the energy threshold for propagation.
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Figure 3.11:CASE 3: propagation of a45� dipping, �uid-�lled fracture, in an elastic
medium with a density strati�cation of the type� 1 > � 0 > � 2. Panels (a), (b) and (c):
energetically preferred path (dashed line), shape of the dike (exaggerated by a factor500)
and modulus of the displacement �eld. Panel (d): total speci�c energy release plotted
as function of thez-coordinate of the top of the dike. The blue horizontal dashed line
represents the energy threshold for propagation.
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� 1 (kg/m3) � 2 (kg/m3) � 0 (kg/m3) � 1 (GPa) � 2 (GPa)
CASE 3 3000 2800 2600 30 30

3000 2400 2600 30 30
CASE 4 3000 2800 2600 30 12

3000 2400 2600 30 12
CASE 5 2800 3000 2600 12 30

Table 3.3: Parameters used in CASE 3, 4, 5:� 0, is the reference density of the �uid
intrusion, � 1, � 2, � 1 and� 2 are the densities and rigidities of the lower and upper layers
respectively. In this cases we use a Poisson ratio� = 0 :25 for the host rock. We consider
a Bulk modulusK f = 10 GPa and a volume (per unit length)V0 = 3 � 10� 3 km2 for the
intrusion.

3.2.1 CASE 3

The path followed by the dike, its shape, the displacement �eld generated in the

medium are plotted in Fig. 3.10 and 3.11, panels a-b-c. The speci�c energy re-

lease in Fig. 3.10 and 3.11 panel d. The rigidity is� = 30 GPa and the other

parameters of the mathematical model are set according to Table 3.3.

In this case we consider two different density con�gurations: (i) we set the density

of the upper medium lower than the density of the layer below but greater than the

density of the intrusion:� 1 > � 2 > � 0 (shown in Fig. 3.10); (ii) we set the density

of the upper medium lower of both: the density of the layer below and the density

of the intrusion� 1 > � 0 > � 2 (shown in Fig. 3.11). In the last con�guration

magma is not buoyant with respect to the upper medium and the dike stops cross-

ing the density transition.

Our model, in these con�gurations, shows straight propagation, suggesting that

even if the contribution of elastic energy is generally smaller than that of grav-

itational, a change in host rock density along the dike's path is not suf�cient to

change its direction of propagation. As discussed in section 3.1.1, there is a strong

interaction between elasticity and gravitational energy.The favourite direction of

propagation results very often simply the direction of maximum opening of the

last elements, that in absence of external stress or elasticheterogeneities, results

the straight propagation.

In Figure 3.10, where the density of the upper medium was set to a higher
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value than the density of the intrusion, the dike continues the propagation also

within the upper layer, decreasing its opening due to the lower pressure gradient

and increasing its length in order to conserve the mass of magma.

In Figure 3.11, where the density of the upper medium was set to a lower value

than the density of the intrusion, the dike arrests when crossing the interface.

Here we set the speci�c fracture energy thresholdET (blue horizontal dashed

line in panel d) to a constant value of1 MPa�m (according to eq. 2.41 and 2.42

with a fracture toughnessK c = 8:5 MPa�km1=2). Dike arrests when the speci�c

total energy gained during the propagation becomes lower than the fracture energy

threshold. Note that the contribution of elastic energy became essential for the

last kilometre of propagation, where the gravitational contribution became lower

than the energy threshold for propagation (green dashed line and blue horizontal

dashed line in Fig. 3.11 panel d). At the arrest of the dike thestress intensity

factor at the top is at the equilibrium with critical stress intensity factor of the host

rock.

3.2.2 CASE 4

We show in Fig. 3.12 and 3.13 the output of the model for CASE 4:the path

followed by the dike, its shape, the displacement �eld generated in the medium

(panels a-b-c) and the speci�c energy release (panel d). In this case we choose a

rigidity ratio r = 0:4 with � 1 = 30 GPa and� 2 = 12 GPa.

Also in this case we consider the same two different density con�gurations of

CASE 3: � 1 > � 2 > � 0 (shown in Fig. 3.12) and� 1 > � 0 > � 2 (shown in Fig.

3.13). The densities employed for these simulations are listed in table 3.3. Again

in the last con�guration magma is not buoyant with respect tothe upper medium

and the dike stops when crossing the density transition.

In these con�gurations, the results of the mathematical model show a path fol-

lowed by the dike that deviates from the straight propagation to the vertical di-

rection. The two different density con�gurations do not change signi�cantly the

path of the dike. In Fig. 3.12 we show also (red dashed line) the path relative to

a medium with homogeneous density (� 2 = � 1) with the same rigidity contrast

(r = 0:4).
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Figure 3.12:CASE 4: propagation of a45� dipping, �uid-�lled fracture, in a layered
elastic media with a density strati�cation of the type� 1 > � 2 > � 0 and rigidity strati�-
cation � 1 > � 2. Panels (a), (b) and (c): energetically preferred path (black dashed line),
shape of the dike (exaggerated by a factor500) and modulus of the displacement �eld.
The red dashed line represents the energetically preferredpath for � 2 = � 1. Panel (d):
total speci�c energy release plotted as function of thez-coordinate of the top of the dike.
The blue horizontal dashed line represents the energy threshold for propagation.
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Figure 3.13:CASE 4: propagation of a45� dipping, �uid-�lled fracture, in an elastic
media with a density strati�cation of the type� 1 > � 0 > � 2 and rigidity strati�cation
� 1 > � 2. Panels (a), (b) and (c): energetically preferred path (dashed line), shape of the
dike (exaggerated by a factor500) and modulus of the displacement �eld. Panel (d): total
speci�c energy release plotted as function of thez-coordinate of the top of the dike. The
blue horizontal dashed line represents the energy threshold for propagation.
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In Figure 3.12, where the density of the upper medium was set to a value larger

than the density of the intrusion, the dike continues the propagation also in the up-

per layer changing its opening due to the lower pressure gradient and the lower

rigidity. This two contributions act in the opposite direction: a lower density leads

to lower overpressure and decreases the dike opening; a lower rigidity increases

the opening at the same overpressure. The result is a shortening of 11%in the

dike length.

In Figure 3.13, where the density of the upper medium was set to a lower value

then the density of the intrusion, the dike arrests when crossing the interface. Note

that also in this case, as the second con�guration of CASE 3, the contribution of

elastic energy became essential for the propagation in the last kilometre. Here the

gravitational contribution became lower than the energy threshold and propaga-

tion is provided by the contribution of the elastic energy only (see Fig. 3.13 panel

d). We set again the speci�c fracture energy thresholdET (blue horizontal dashed

line in panel d) to1 MPa�m (fracture toughnessK c = 8:5 MPa�km1=2). The

dike arrests when the speci�c total energy gained during thepropagation becomes

lower than the fracture energy threshold.

3.2.3 CASE 5

We show in Fig. 3.14 the output of the model for CASE 5: the pathfollowed by

the dike, its shape, the displacement �eld generated in the medium (panels a-b-c)

and the speci�c energy release (panel d). In this case we invert the rigidity ratio

with respect to the CASE 4:r = 2:5 with � 1 = 12 GPa and� 2 = 30 GPa.

Here we consider only one density con�guration:� 2 > � 1; this con�guration

certainly does not represent a typical geophysical scenario but we can refer our

setting to a situation in which a rigid layer intrudes horizontally into a homo-

geneous matrix or (especially in volcanic areas) in which sedimentary rocks are

deposited over a layer of tuffs or pyroclastic sediments. The densities employed

for these simulations are listed in table 3.3. In Fig. 3.14 weshow also (red dashed

line) the path relative to a medium with homogeneous density(� 2 = � 1 = 2800

kg/m3) and the same rigidity contrast (r = 2:5).

In this con�guration, the results of the mathematical modelshow that the dike fol-
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Figure 3.14:CASE 5: propagation of a60� dipping, �uid-�lled fracture, in an elastic
media with a density strati�cation of the type� 2 > � 1 > � 0 and rigidity strati�cation
� 1 < � 2. Panels (a), (b) and (c): energetically preferred path (black dashed line), shape
of the dike (exaggerated by a factor500) and modulus of the displacement �eld. The
red dashed line represents the energetically preferred path for � 2 = � 1. Panel (d): total
speci�c energy release plotted as function of thez-coordinate of the top of the dike. The
blue horizontal dashed line represents the energy threshold for propagation.
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r � � (kg/m3) � in � fn � l in (km) l fn (km) N in N fn

CASE 3 1 200 45� 45� � 1� 6.00 7.60 75 95
600 (� ) 45� 45� � 1� 6.00 7.26 100 121

CASE 4 0.4 200 45� 59� � 1� 5.95 5.30 119 106
600 (� ) 45� 55� � 1� 5.95 6.15 119 123

CASE 5 2.5 -200 60� 18� � 1� 5.22 7.02 87 117

Table 3.4:Results of the numerical model and initial (assumed) and �nal (computed)
values of dike parameters.� � = � 1 � � 2 is the difference between the density of the �rst
and second layer respectively. The details of densities andrigidities employed in each
case are listed in table 3.3. The asterisk(� ) indicates a density con�guration in which the
magma is not buoyant in the upper medium (� 1 > � 0 > � 2), in this cases the dike arrests
crossing the interface.

lows a path that deviates from the straight propagation to the horizontal direction.

In this con�guration the pressure gradient in upper medium is higher due to

the grater density. Although the higher rigidity decreasesthe opening of the dike,

moreover the de�ection to the horizontal due to the rigiditytransition decreases

the pressure pro�le. The result is a lengthening of35%in the dike length.

We set again the speci�c fracture energy thresholdET (blue horizontal dashed line

in panel d) to1 MPa�m (fracture toughnessK c = 8:5 MPa�km1=2). This values

was not reached during the propagation so that the dike was not arrested.

3.3 Fracture toughness heterogeneities

In this section we show results obtained considering dike propagation in a medium

made up of 2 half-spaces welded weakly. We reproduce this con�guration in the

mathematical model by setting the fracture toughness at theinterface (z = 0) to

a lower value with respect to the fracture toughness of the 2 homogeneous half-

spaces.

We consider three different con�gurations: homogeneous medium with a weak-

interface inz = 0 (CASE 6); then we consider a higher rigidity and more dense

lower medium, below a compliant, less dense upper medium (CASE 7); �nally

we show the opposite con�guration with a lower medium with low density and

rigidity and an upper medium with higher rigidity and density (CASE 8).
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� ET (MPa�m) � 1 (kg/m3) � 2 (kg/m3) � 1 (GPa) � 2 (GPa)
CASE 6 2.5 3000 3000 30 30
CASE 7 4.2 3000 2800 30 12
CASE 8 0.5 2800 3000 12 30

Table 3.5:Parameters used in CASE 6, 7, 8:� ET is the difference between the fracture
energy threshold in the layers and at the interface: in this cases the fracture toughness of
the media was ever greater than the fracture toughness on thesurfacez = 0 ; � 1, � 2, � 1

and � 2 are the densities and rigidities of the lower and upper layers respectively. In this
cases we use a reference density� 0 = 2600 kg/m3 for the �uid intrusion, a Bulk modulus
K f = 10 GPa and a volume (per unit length)V0 = 3 � 10� 3 km2. We consider a Poisson
ratio � = 0 :25 for the host rock.

For each of the following cases we set the parameters of the mathematical

model to the values reported in Table 3.5.

3.3.1 CASE 6

We show in Fig. 3.15 the output of the model for CASE 6: the pathfollowed by

the dike, its shape, the displacement �eld generated in the medium (panels a-b-c)

and the speci�c energy release (panel d). In this case we consider a homogeneous

medium with a weak surface inz = 0.

We set the speci�c fracture energy thresholdET (blue dashed line in panel d) to4

MPa�m in the medium and to1 MPa�m on the surfacez = 0. The fracture energy

drop make the interface (z = 0) the energetically preferred direction of propaga-

tion, in spite of the less ef�cient contribution to the totalenergy release of both:

gravitational and elastic energy. Here (Fig. 3.15) and in the following 2 cases

(Fig. 3.16 and 3.17) the black dashed line is the sum of the gravitational and elas-

tic contributions (� G and� W) minus the fracture energy threshold (ET ). The

dike arrests when the total energy release per unit lengthening (black dashed line)

reaches zero. Note that in the last 2 km of the dike path, the propagation along the

interface is allowed only by the contribution of the elasticdeformation energy.
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Figure 3.15:CASE 6: propagation of a60� dipping, �uid-�lled fracture, in an elastic
homogeneous medium with a weak surface inz = 0 . Panels (a), (b) and (c): energetically
preferred path (dashed line), shape of the dike (exaggerated by a factor500) and modulus
of the displacement �eld. Panel (d): total speci�c energy release plotted as function of the
z-coordinate of the top of the dike. The blue dashed line represents the energy threshold
for propagation �lled by the dike during the propagation:8 MPa�m in the medium (z > 0
or z < 0) and1 MPa�m at the interface (z = 0 ).
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Figure 3.16:CASE 7: propagation of a60� dipping, �uid-�lled fracture, in an elastic
medium, with a weak surface inz = 0 , made up of 2 homogeneous half-spaces: the
lower with rigidity � 1 = 30 GPa and density� 1 = 3000 kg/m3 and the upper with
rigidity � 2 = 12 GPa and density� 2 = 2800 kg/m3. Panels (a), (b) and (c): energetically
preferred path (dashed line), shape of the dike (exaggerated by a factor500) and modulus
of the displacement �eld. Panel (d): total speci�c energy release plotted as function of the
z-coordinate of the top of the dike. The blue dashed line represents the energy threshold
for propagation �lled by the dike during the propagation:9 MPa�m in the medium (z > 0
or z < 0) and1 MPa�m at the interface (z = 0 ).
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3.3.2 CASE 7

We show in Fig. 3.16 the output relative to the con�guration chosen in CASE 7.

In this case we consider again a weak surface inz = 0; the elastic medium is

made up of 2 homogeneous half-spaces: the lower with rigidity � 1 = 30 GPa and

density� 1 = 3000 kg/m3 and the upper with rigidity� 2 = 12 GPa and density

� 2 = 2800 kg/m3.

We set the speci�c fracture energy thresholdET (blue dashed line in panel d) to

5:2 MPa�m in the medium and to1 MPa�m on the surfacez = 0. Again such a

fracture energy drop along the interface makez = 0 the energetically preferred

direction for propagation. Also in this case, as in the previous, the last 2 km of

propagation along the interface, are allowed thank to the contribution of the elastic

deformation energy.

Note that in this case we need a grater fracture energy drop inorder to obtain dike

propagation along the interface: in fact with this setting (� 1 > � 2), in absence of

any fracture toughness discontinuity, we obtained (CASE 1 and 4) that the total

energy release was maximised by a deviation to the vertical in the dike path.

3.3.3 CASE 8

In Fig. 3.17 we show the output for CASE 8. In this case we consider the opposite

con�guration with respect to CASE 7: lower half-space with rigidity � 1 = 12 GPa

and density� 1 = 2800kg/m3 and upper half-space with rigidity� 2 = 30 GPa and

density� 2 = 3000 kg/m3. Again we set the weak surface inz = 0.

The speci�c fracture energy thresholdET (blue dashed line in panel d) in the

medium is1:5 MPa�m and1 MPa�m on the surfacez = 0. Again we chosen a

fracture energy drop along the interface high enough to makez = 0 the energeti-

cally preferred direction for propagation, in spite of the less ef�cient contribution

of gravitational and elastic energy release. In this case, the last kilometre of propa-

gation along the interface, is allowed by the contribution of the elastic deformation

energy: here the gravitational contribution by them self should not be able to guar-

antee propagation.

Note that in this case a lower fracture energy drop is needed in order to obtain dike
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Figure 3.17:CASE 8: propagation of a60� dipping, �uid-�lled fracture, in the opposite
con�guration of CASE 7: weak surface inz = 0 , � 1 = 12 GPa,� 1 = 2800 kg/m3, � 2 =
12 GPa,� 2 = 3000 kg/m3. Panels (a), (b) and (c): energetically preferred path (dashed
line), shape of the dike (exaggerated by a factor500) and modulus of the displacement
�eld. Panel (d): total speci�c energy release plotted as function of thez-coordinate of
the top of the dike. The blue dashed line represents the energy threshold for propagation
�lled by the dike during the propagation:3:5 MPa�m in the medium (z > 0 or z < 0) and
0:5 MPa�m at the interface (z = 0 ).
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propagation along the interface: in fact with this setting (� 2 > � 1), in absence of

any fracture toughness discontinuity, we obtained (CASE 2 and 5) that the total

energy release was maximised by a deviation to the horizontal in the dike path.

3.4 Discussion

Some of the results obtained from the numerical models were surprising to us: for

instance, we expected that the dike should deviate signi�cantly toward the vertical,

even in a homogeneous medium, due to the buoyancy of the �lling �uid. Instead,

the dike dip remained constant in the numerical models, until the interface was

reached. This was explained in section 3.1.1 (homogeneous medium) in terms of

the more ef�cient upward displacement of the intrusion massfor rectilinear prop-

agation. An experimental check of these results was provided by comparing our

numerical �ndings with results from experiments in gelatinand will be presented

in the next chapter.

Furthermore, the parameter values employed in the mathematical model need

be discussed. The value assumed for magma density� 0 is much lower than the

value � 0 = � r (1 � � � T) obtained for thermal expansion of the basaltic rocks

(even a temperature difference� T � 103 K provides� � � 100kg/m3 only).

Such small values of� � provide very low overpressure and very thin dike open-

ing (� u � 10� 2 m) employing deep crust rigidities (� � 30 GPa) and initial

lengthl � 103 - 104 m. Such a thin dike, in presence of such a high� T, would

become frozen in a very short time, which may be approximately estimated as

� � � u2L2� 0

4kcp� T2 (whereL is the latent heat,� 0 is the density,k is the thermal con-

ductivity andcp the speci�c heat of magma) from Turcotte & Schubert (1982,

Chapter 4). However it is not necessary that magma in the dikeshould be much

hotter than the surrounding rocks in order to be �uid and lighter than the em-

bedding medium: magma may be �uid because it is geochemically different than

the surrounding rocks (which, even in source regions, are typically the refractory

residual of the same primitive magma). Water, in particular, lowers consider-
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ably the melting temperature. Moreover, at shallow depths,a highly vesciculated

magma may easily be lighter than2000kg/m3 with respect to2900kg/m3 of

basaltic rocks, without requiring a signi�cant� T. A lower � T increases sig-

ni�cantly the freezing time� t, according to the previous formula. The value

� 0 = 2600 kg/m3, employed in the numerical model, (see Table 3.1) was arbi-

trary chosen within the reasonable range provided by the previous considerations.

Field observations generally show dike thicknesses from a fraction of 1 m to sev-

eral meters. The initial volume employed in our simulations(see Table 3.1) was

chosen in order to provide� 1 m opening in a medium with 30 GPa rigidity. The

opening increases up to a factor 10 when the dike enters a softer medium.

3.4.1 Numerical issues for an elementary dislocation closeand

across an elastic discontinuity

Here we show and discuss some results relative to an elementary closed disloca-

tion, with overpressure assigned at its middle point, in proximity and across an

elastic discontinuity.

As written in section 2.3 for the boundary element crack, theBurger vector of a

single elementary closed dislocation, opening under assigned stress conditions, is

chosen so that the stress due to the dislocation balances thepre-existent stress at

its middle point. The choice to satisfy the equilibrium condition for the stresses at

the middle point of the dislocation is justi�ed only by the fact that this is the best

choice in order to obtain a Burger vector, for the closed dislocation, that approx-

imates well the maximum opening of a crack with the same (constant) pre-stress

condition along the crack surface.

That means that, when the pre-stress on a dislocation surface is very far to be

constant, we have no guarantee that the opening, obtained satisfying the equilib-

rium condition in the middle point of the dislocation, will be representative of the

opening of a “real” crack. This is the case we are going to discuss. The presence

of an elastic discontinuity generates an asymmetry of the stress �eld due to the

elementary dislocation, and a discontinuity of thexx component of the stress ten-

sor along the interface. In this case the stress �eld due to anelementary closed

dislocation calculated at its middle point could be no more representative of the
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Figure 3.18:Cross section area of a horizontal elementary closed dislocation as function
of the z coordinate of its middle point in an elastic medium with rigidity transition in
z = 0 . The dislocation length is 1 km and the assigned overpressure is 1 MPa.

opening of the dislocation. As a consequence an unreasonable Burger vector is

required to balance the forces at the centre of the dislocation.

In Fig. 3.18 we show the opening of a horizontal elementary closed disloca-

tion, with assigned constant overpressure, as a function ofits z coordinate in a

medium with an elastic discontinuity inz = 0. It is evident that the cross sec-

tion of the elementary dislocation should grow monotonically while it is moving

upward, since it is feeling a lower effective rigidity. On the contrary we obtain

a relative maximum in the stiffer medium, near to the rigidity transition. This

effect is clearly due to the closeness of the elastic discontinuity. In fact the dis-

tance at which we observe the anomalous maximum depends on the length of the

dislocation: in Fig. 3.19 we shows the results of the same test performed with 2

boundary elements cracks with 10 and 100 elements respectively. In Fig. 3.19-a

(10 elements crack) the maximum and the distance at which it appears, are re-

duced of a order of magnitude and in 3.19-b (100 elements crack) of 2 orders

(resulting unnoticeable in the graph).
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Figure 3.19:Cross section area of a horizontal boundary elements crack as function of
thez coordinate of its middle point in an elastic medium with rigidity transition inz = 0 .
Panel a and b refer to a crack made of 10 and 100 elements respectively. The crack length
is 1 km and the assigned, constant overpressure is 1 MPa.
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Figure 3.20:Cross section area of a tilted elementary closed dislocation as function of
the dip angle� . The dislocation has a tip on the interfacez = 0 that is a rigidity transition
surface. The dislocation length is 1 km and the assigned overpressure is 1 MPa.

This effect may introduce an error in the choice of the favourite direction for the

opening of a single dislocation very close to the rigidity transition: in Fig. 3.20

we perform an analogous test �xing a tip of the elementary closed dislocation on

the interfacez = 0 and varying the dip angle from90� to � 90� (see the insert in

Fig. 3.20).

We obtain also in this case an analogous graph, with a relative maximum for a

dip angle� = 27:5� . Using a boundary elements crack, or moving the dislocation

away from the discontinuity, this effect progressively (and quickly) disappears.

The fact that this effect scales with the linear dimension ofthe elements of the

crack, makes us con�dent that the possible errors introduced in our model are re-

stricted to a region around the interface with thickness of maximum 2 elements of

the boundary elements crack. Increasing the number of elements in our simulation

we reduce the in�uence of this effect and we �nd stable paths for cracks made of

40-50 elements or more.

In Fig. 3.21-a we show the opening of a vertical elementary closed dislocation,
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Figure 3.21:Cross section area of a vertical elementary closed dislocation as function
of the z coordinate of its middle point in an elastic medium with rigidity transition in
z = 0 . The dislocation length is 1 km and the assigned overpressure is 1 MPa. In panel b,
where the dislocation is across the interface (region II andIII), the dislocation is split in 2
elements in correspondence ofz = 0 .
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Figure 3.22:Cross section area of a vertical boundary elements crack as function of the
z coordinate of its middle point in an elastic medium with rigidity transition inz = 0 .
Panel a and b refer to a crack made of 10 and 100 elements respectively. The crack length
is 1 km and the assigned, constant overpressure is 1 MPa.
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Figure 3.23:Cross section area of a vertical boundary elements crack as function of the
z coordinate of its middle point in an elastic medium with rigidity transition inz = 0 .
Panel a and b refer to a crack made of 10 and 100 elements respectively. The crack length
is 1 km and the assigned, constant overpressure is 1 MPa. Here, when an element is across
the interface, it is split in two in correspondence ofz = 0 .
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with assigned constant overpressure, as a function of its z coordinate in a medium

with an elastic discontinuity inz = 0. The graph is divided in 4 region in which

the dislocation is: (I) totally embedded in the lower half space (� 1 = 30GP a);

(II) across the interface with its middle point in the lower half space; (III) across

the interface with its middle point in the upper half space; (IV) totally embedded

in the upper half space (� 2 = 10GP a). Also in this case we expect that the cross

section of the dislocation grows monotonically approaching and entering in the

upper compliant medium. On the contrary, we obtain, Fig. 3.21-a, that the open-

ing of the elementary dislocation, under constant overpressure condition, has an

unexpected behaviour in region II and III. In region II we observe an unreasonable

relative minimum forz = 0:2km (the length of the dislocation is 1 km) with the

cross section of the dislocation that decreases fromz = 0:5 to z = 0:2. In region

III we obtain a relative maximum forz = � 0:05 and the cross section decreases

from z = � 0:05 to z = � 0:5. Moreover the graph in Fig. 3.21-a shows a discon-

tinuity in z = 0 that consists in a sudden change in the opening of the dislocation

when its centre oversteps the interface. The discontinuityin the opening can be re-

lated to the discontinuity inz = 0 of the� xx component of the stress �eld. In fact

the compressive stress, induced by an elementary dislocation across the interface,

“accumulates” in the stiffer half-space, in proximity of the rigidity transition, and

quickly falls down in the compliant half-space. When the elementary dislocation

is across the transition, the presence of such highly variable compressive stresses

on the dislocation surface makes the middle point of the dislocation not the best

location to calculate the Burger vector that satis�es the equilibrium of stresses

In Fig. 3.21-b we present the same case splitting, in correspondence ofz = 0, the

dislocation which is across the interface, into two elementary closed dislocations.

We can appreciate that the discontinuity inz = 0 disappears as the maximum in

the region III. Again we observe a relative minimum in regionII (for z = 0:25)

and in general, for region II and III, the opening of the dislocation appears to be

underestimated. That is understandable considering that an elementary disloca-

tion always overestimates the cross section of a crack and inregion II and III, in

which we use a 2 elements crack, a generic reduction of the cross section is ex-

pected.

In analogy with the previous case (horizontal dislocation)we try to by-pass the
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problems due to the elementary dislocation approximation,introducing a bound-

ary elements crack. In Fig. 3.22 we show results obtained fora crack built with

10 elements (3.22-a) and 100 elements (3.22-b). As expectedthe discontinuity in

the cross section decrease in amplitude but is cyclically reproduced each time that

a dislocation element passes the interface.

The undesired effect seems to be conclusively solved using aboundary elements

crack and splitting into two elements the dislocation each time which it is across

the interface. In Fig. 3.23-a and 3.23-b we show respectively a 10 and 100 ele-

ments crack with no dislocations across the interface.
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Analogue models

Here we compare our numerical �ndings with results from experiments in gelatin.

We used 200 Bloom gelatin powder from the company AG Stoess. The gelatin is

diluted in water at different concentrations in order to control the resulting rigidity

of the gelatin mass. It is poured into a cylindrical container (diameterd = 29 cm,

heightH = 40 cm). We inject a lighter �uid (air) from an inclined hole at the

bottom of the container close to the lateral walls (see Fig.3.10). Poisson's ratio

for gelatin is very close to� = 0:5 (gelatin has about the same compressibility as

water). Dike propagation is recorded with High De�nition Camcorders. We mea-

sure incidence and refraction angles of the crack trajectory inspecting snapshots

of the recorded movies.

Propagating cracks �lled with viscous �uids show a characteristic shape with

a head region followed by a thin channel where a little portion of the �uid is

left behind. The less viscous the �uid, the thinner the channel. Because of its low

viscosity, air seemed the best choice for our purpose, sincethe air mass left behind

by the head of the fracture during propagation is negligible.

In order to compare the 3D experimental results, obtained ina medium with

�nite dimensions, with numerical results obtained from a 2Dplane strain model

in an unbounded medium, a few considerations are needed. The�rst problem to

be taken into account is the lateral dimensionw of the dike (which is in�nite in

the plane strain model). During propagation in the 2D model we imposed con-

servation of the mass per unit lengthM0 = V0 � � 0. In order to estimate the

75
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Figure 4.1:Experimental set-up.

corresponding 3D volumeV (3D )
0 (and conserve the total massM (3D )

0 = V (3D )
0 � 0)

we must evaluate the breadthw of �uid-�lled fractures. In the analogue experi-

ments we observe thatw is typically smaller than, but similar to, its lengthL. In

a plane strain model, the 2D volume for a tear-drop crack (assuming a homoge-

neous medium, linear overpressure pro�le with vanishing Stress Intensity Factor

at the trailing edge) is

V0 =
�

� (1 � � )� � g sin�
2�

� �
L
2

� 3

so that

L = 2
�

2�
� (1 � � )� � g sin�

� V0

� 1
3

it is a suf�ciently good approximation, to our purpose, to write the 3D volume as:

V (3D ) � V0 �
w
2
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Finally, considering the breadthw �
3
4

L (from lab. observations), we can write:

V (3D ) � V0 �
3
8

L =
3
4

�
2�

� (1 � � )� � g sin�

� 1
3

V
4
3

0 (4.1)

From the productV (3D ) � 0 we estimate the intrusion's mass as:

M (3D )
0 =

3
4

�
2�

� (1 � � )� � g sin�

� 1
3

V
4
3

0 � � 0 (4.2)

For example, according to eq. (4.2), for the dikes considered in the previous

simulations (see Table 3.1 for the employed reference values), with � varying in

the range(1:5 � 30) GPa, we obtainM (3D )
0 � (0:8 � 2:3)108 kg. This mass

represents the order of magnitude of the mass of a real dike having a cross sec-

tion V0 = 100 m2 on the plane(x; z). Moreover, in our 2D model, we conserve

the productV0 � � 0, representing a mass per unit length. As a consequence, if

the breadth of the corresponding 3D dike were to change during propagation (in

particular when it crosses the interface between differentlayers), the total mass

M (3D )
0 = 1

2V0w� 0 would change. This is clearly an intrinsic limitation of a plane

strain model, in which mass �ow in the strike direction is forbidden. During ex-

periments in layered gelatin, we observe that the relative change ofw is typically

small, so that we shall considerw constant; this means that the 2-D massM0

given by eq. (4.2) remains approximately constant during propagation even for a

3D dike. In the next paragraph, when we show the comparison between numerical

and analogue models, we use eq. (4.1) to set the input 2D volume V0, knowing

the real injected volumeVin .

Another problem concerns the �nite dimensions of the mediumin the analogue

experiments. We try to simulate a semi-in�nite half-space as closely as possible

by producing gelatin layers much thicker than the crack length and similar to the

lateral dimension of the container. As far as the propagation path is concerned,

observations show that a crack feels appreciably the presence of the container and

of the interface between layers only when it is much closer tothem than its length

L.

Finally, we run our numerical code employing the measured values of density
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r � 1 (kPa) � 2 (kPa) Vair (ml) � in � fn � th
fn

0 1:20� 0:15 - 2:0 � 0:2 (55 � 1)� (55 � 1)� (55 � 2)�

0.37 1:6 � 0:2 0:6 � 0:1 10� 1 (68 � 1)� (72 � 1)� (73 � 1)�

1.73 1:10� 0:15 1:9 � 0:2 8 � 1 (65 � 1)� (50 � 1)� (52 � 10)�

Table 4.1:Parameters employed in the numerical runs to reproduce the analogue experi-
ments:r is the rigidity contrast,� 1;2 are the measured rigidities respectively of the lower
and upper gelatin layers,Vair is the volume of the intrusion.K f = 140 kPa, � = 0 :5
and� gel = 103 kg=m3 are, respectively, the bulk modulus assumed for the air intrusion,
the Poisson ratio and the density assumed for both gelatin layers. The experimentally
determined initial value of the dip angle is� in and the �nal dip� fn is compared with the
theoretical value� th

fn with error bounds computed taking into account the uncertainty in
� 1; � 2. Note that the calculated dip angle� th

fn for r = 0 represents the average dip angle
while only the last 4 out of 71 elements deviate from the straight direction (the uppermost
dips at67� ).

and rigidity of the gelatin layers, the values of density, compressibility and initial

volume of the air intrusion (see Tab. 4.1) and compare the results of the analogue

and the numerical models.

4.1 Experimental results: CASE 0 (free surface)

We injected a volumeVin = 2 ml of air into a homogeneous gelatin layer with

rigidity � = 1:2 � 0:2. The path of propagation is shown in Fig.4.2. Crack

propagation is very slow and rectilinear, until the upper tip gets very close to the

free surface as predicted in section 3.1.3. The initial dip angle is� in = (55 � 1)�

and do not change until the crack gets the free surface: the measured �nal dip

angle is� fn = (55 � 1)� . Shape and angles resulting from a correspondent run

of the numerical code are shown in Fig.4.3, where a dashed line indicates the

path obtained setting the �uid parameters according to Table 4.1 and the elastic

parameters as reported in panel 4.2-a4. In this case, from the mathematical model

we obtain a deviation to the vertical direction for the dip angles of the last elements

4 elements (over 71). The deviation resulting from the mathematical simulation,

involves the last2:5 mm of propagation for a crack with initial length of5:2 cm.
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Figure 4.2:CASE 0: Snapshots from the record of the �rst experiment in Table 4.1 (free
surface). In panel (a) and (b) cross section views of the air-�lled crack are shown. The
snapshots was taken at the beginning of the experiment, few seconds after the air injection,
and at the end of the experiment, with the crack upper tip veryclose to the free surface.
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Figure 4.3: Results of the mathematical simulation of gelatin experiment: CASE 0.
We employed in the mathematical model a test angle� = 2 � and an initial number of
dislocation elementsN = 88.

With the temporal and spatial resolution of ours recording instruments we was

not able to observe this deviation in the analogue experiment, also because of the

crack acceleration very close to the free surface. Althoughthe average dip angle

for the boundary element crack results to be55:3� in the “�nal” con�guration.

Considering this average dip angle from the mathematical model, experimental

and numerical results agree within the experimental errors.

4.2 Experimental results: CASE I

We injected a volumeVin = 10 ml of air into a medium made up by a lower gelatin

layer with rigidity � 1 = 1:6 � 0:2 KPa and an upper layer with rigidity� 2 =

0:6 � 0:1 KPa. The path of propagation is shown in Fig.4.4. Crack propagation

is very slow and rectilinear, until the upper tip gets very close to the interface,

where the dip sharply changes toward the vertical. The crackfollows a `refracted'

trajectory as predicted in section 3.1.2. The incidence, dip angle is� in = (68 � 1)�
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(a) (c)(b)
dfn

din

Figure 4.4:CASE I: Snapshots from the record of the second experiment inTable 4.1
(r = 0 :37). In panel (a) and (b) frontal and cross section views of the air-�lled crack are
shown: snapshots taken before and after the rigidity transition are superposed. In panel
(c) the path followed by the crack is highlighted, after crack passage, by injection of red
dye from the bottom of the fractured channel. Lines reproducing the crack path are shifted
to the right with respect to the real crack.
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Figure 4.5:Results of the mathematical simulation of gelatin experiment: CASE I. We
employed in the mathematical model a test angle� = 1 :6� and an initial number of
dislocation elementsN = 145.

and the refraction angle is� rf = (72 � 1)� . Shape and angles resulting from a

correspondent run of the numerical code are shown in Fig.4.5, where a dashed line

indicates the path obtained setting the �uid parameters according to Table 4.1 and

the elastic parameters as reported in panel 4.5-a4. Paths uncertainties are obtained

employing the upper and lower estimates of ther -value computed from measured

gelatin rigidities (i.e.rmax = � 2+� � 2
� 1 � � � 1

andrmin = � 2 � � � 2
� 1+� � 1

). In this case the path

is very stable even perturbing the model parameters. Experimental and numerical

results agree within the experimental errors.

4.3 Experimental results: CASE II

We injected a total volumeVin = 8 ml of air into a gelatin made up by a soft lower

layer (� 1 = 1:10� 0:15KPa) and a more rigid upper layer (� 2 = 1:9 � 0:2 KPa).

In this experiment the total volumeVin was injected in two steps: after an ini-

tial injection of 2 ml, suf�cient for the propagation in the compliant medium, we
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Figure 4.6:CASE II: propagation of an air-�lled crack from soft to rigidgelatin layers.
The initial volume of the crack (2 ml) was not suf�cient to propagate into the more rigid
layer: the crack stopped at the interface. After a supplementary injection of 6 ml of air,
the crack bifurcated along the interface (images in the insets) and into the stiffer medium,
with a dip angle� rf . In the central image, a line is drawn to highlight the path followed
by the crack propagating from the soft into the rigid layer.
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Figure 4.7: Results of the mathematical simulation of gelatin experiment: CASE II.
We employed in the mathematical model a test angle� = 1 � and an initial number of
dislocation elementsN = 111.

added 6 ml of air in order to obtain a suf�cient total volume ofthe intrusion for the

propagation in the stiffer layer (see Fig.4.6). Again, the crack follows a `refracted'

trajectory, as predicted in paragraph 3.1.4. The incidence, dip angle is(65 � 1)�

and the refraction angle is(50� 1)� . In Fig.4.7 we report shape and angles result-

ing from a correspondent run of the numerical code. The dashed line indicates the

path obtained setting the �uid parameters according to Table 4.1 and the elastic

parameters as reported in panel 4.7-a4. The paths delimiting the wide orange area

are obtained employing the upper and lower estimates of ther -value computed

from measured gelatin rigidities (i.e.rmax = � 2+� � 2
� 1 � � � 1

andrmin = � 2 � � � 2
� 1+� � 1

). In

this case, perturbing the elastic parameters, we obtain a considerable variability

in the refracted angle, according to the considerations exposed in section 3.1.4.

Experimental and numerical results agree within errors. Unfortunately, we were

not able to produce gelatin layers with rigidity contrasts lower than 0.37 so that

the extreme cases of dike-to-sill conversions could not be observed.
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Discussion and conclusions

This work illustrates the relevance of elastic and density layering in the path of

dikes and other �uid-�lled fractures and demonstrates thatthe direction of prop-

agation of �uid-�lled cracks changes when they cross the interface between ma-

terials with different elastic properties. Explicit solutions from the mathematical

model were shown taking into account elastic and density discontinuities and frac-

ture toughness heterogeneities.

Results from numerical 2D boundary-element modelling and laboratory experi-

ments on air injection in gelatin provide the same path deviation as a function

of elastic parameters, density difference between host rock and �uid, mass and

compressibility of the �uid.

5.1 Numerical model

The boundary-element code is based on 2D plane strain analytical solutions for a

medium made of two welded half spaces with different elasticparameters. The

dike trajectory is chosen among a range of possibilities according to energy min-

imisation. Mass is conserved during propagation, and the dike walls close at the

lower tip while a new fracture is created at the top. Real dikes may lose or gain

mass along their path. Since one focus on a limited region close to a layer inter-

face, the assumption of mass conservation should not be restrictive.

This model does not account for �uid dynamics inside the dikenor for ther-
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mal effects. Since it does not include the viscosity of the �uid, it cannot reveal

any information related to velocity of propagation. Changes in viscous dissipa-

tion, possibly occurring when the dike crosses the interface, may affect the energy

balance in a way that the present model cannot quantify.

The simulations show that gravitational energy has an important effect on the

propagation path. Elastic parameters lead to increasing ordecreasing crack open-

ing and hence to shape changes. This modi�es the position of the centre of gravity

of the �uid batch and its potential gravitational energy. This interaction between

elasticity and gravity had never been highlighted before.

The layer interface is modelled analytically. This allows us to retain many sig-

ni�cant �gures in the solution of the crack problem even whenthe crack is very

close to or is crossing the interface. The difference in energy release for various

directions of the test elements may be very similar but in thetested con�gurations

this code can distinguish the preferred direction with suf�cient accuracy. Numer-

ical results are stable when the crack is discretised with more thanN = 40 ele-

ments. As for the deviation angle� of the test dislocations, stable paths are found

when� is � 180� =N. The uncertainty on the preferred propagation direction isin

the order of the test angle used in the run.

5.2 Analogue experiments

Our numerical results on the propagation path agree qualitatively and quantita-

tively with the performed laboratory experiments. This supports the validity of

the energetic criterion employed to predict the propagation direction of a slowly

moving crack. In particular, this proves that the energy contributions important

to predict dike path are the gravitational potential energyand the elastic strain

energy. Although the energy loss due to viscous dissipationat crack tip or �uid

motion within the crack has been shown to be important in constraining the prop-

agation velocity (see Dahm, 2000b; Roper & Lister, 2005, 2007), the present nu-

merical model predicts within errors the propagation path —at least for air-�lled

fractures slowly moving in gelatin.

The comparison between numerical models and analogue experiments allows

us to validate the numerical model with experimental observations and vice-versa.
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For instance, it has been shown experimentally that the crack lateral breadthw is

nearly constant before and after crossing the interface (see Rivalta et al., 2005,

Fig. 2), so that mass is conserved automatically whenM0=w is conserved. Ifw

should vary signi�cantly — e.g. while crossing the interface, when the frontal

shape of the fracture is complicated — an additional correction should be intro-

duced. The fact that the 2D mathematical model predicts incidence and refraction

angles within errors demonstrates that 3D effects are small.

A free surface is present in the experiments and not in the layered numerical

models — its effect was found to be important for the velocitychange (Rivalta &

Dahm, 2006) close to the free-surface itself. Numerical results shows (CASE 1b,

sec. 3.1.3) the propagation direction is affected by the presence of the free surface

only when the upper tip is closer to it than1%of the fracture length. This makes us

con�dent that the effects of a free surface are negligible when considering changes

of propagation direction at the interface between different layers if the thickness of

the upper layer is larger than dike length. Moreover, rigid lateral and bottom walls

of the container provide boundary conditions of vanishing displacement which,

in the numerical model, are imposed at in�nity. In the anologue experiments, the

interface crossing ever occurs near the centre of the container, in order to minimise

undesired effects from its lateral surface.

Experimental conditions do not reproduce very large contrasts of elastic pa-

rameters. On one hand, this prevents us validating the numerical models where the

contrast isr & 2 or r . 0:3. On the other hand, moderate rigidity contrasts may

be more representative of typical crustal values inferred from seismic soundings.

However, in certain conditions, when the propagation is very slow, the temper-

ature is high and the deformation is large, then anelastic processes are relevant

which may provide much lower effective rigidity at depth than felt by seismic

waves. Results of the numerical model for high rigidity contrast may apply to

these conditions.

5.3 Implications for dike propagation in the crust

The illustrated refraction-like behaviour occurring as the crack crosses the in-

terface between layers of different rigidities has variousimplications for magma



88 CHAPTER 5. DISCUSSION AND CONCLUSIONS

dikes in the mantle and crust.

Dikes inclined with respect to the vertical are expected to develop at depth,

close to a magma chamber, due to the tensional stress �eld provided by cham-

ber in�ation: for instance, maximum tensional axes around aspherical in�ating

source are perpendicular to the radial direction so that dikes can be generated at

any angle. Furthermore, oblique dikes form if magma ascendsthrough weakness

planes, such as the ring faults usually present within volcanic calderas (e.g. Bur-

chardt, 2008; Gudmundsson & Brenner, 2005).

If a dike always meets transitions from more rigid to more compliant layers,

its path is predicted to gradually approach the vertical direction. The deviatoric

stress �eld of tectonic origin (which is ignored in the present paper) is considered

to be responsible for the nearly vertical dip often observedfor real dikes, but the

refraction phenomenon described above may be important, aswell.

In any case, observations of strongly inclined dikes are frequent (e.g. Bur-

chardt, 2008) and inclined dikes are often inferred from inversion of deformation

data (e.g. Froger et al., 2004; Sigmundsson et al., 1999) andfrom seismic data

(e.g. Chouet et al., 2003).

On the other hand, transition from compliant to stiff rocks is often found when

competent lava beds are superposed onto pyroclastic deposits. In such cases our

model predicts dike de�ection toward the horizontal or evensill formation, as

found in the �eld by Burchardt (2008); Gudmundsson & Brenner(2005). A strik-

ing example of such a behaviour is shown in Figure 5.1. Similar results are found

by Kavanagh et al. (2006) with gelatin experiments.

Moderate rigidity contrasts may be more representative of typical crustal val-

ues inferred from seismic soundings. However, in certain conditions -when the

propagation is very slow, the temperature is high and the deformation is large

- then anelastic processes are relevant which may provide much lower effective

rigidity at depth than inferred by seismic waves. A slow dike, feeling an effective

long-term rigidity rather than a short-term one, would effectively see the mantle-

crust boundary (or any boundary between a viscoelastic and an elastic medium)

as a transition toward a more rigid medium, hence tending to de�ect toward the

horizontal. As mentioned in the introduction, recent geophysical studies on the

topography of the Moho at continental rift zones have evidenced the presence of
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Figure 5.1:A dike de�ected toward the horizontal when approaching a stiffer layer. The
picture was taken by Prof. Michael S. Ramsey, University of Pittsburgh, in the Colorado
River Grand Canyon, Arizona. The dike is basalt and intrudesdiagonally into the Hakatai
Shale (the red host rock); the stiffer rock above the dike is Shinumo Quartzite. Typical
rigidity values for these rocks yield a ratior = � 2=� 1 � 6.
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stacked sills from low to mid crustal depths (see Thybo & Nielsen, 2009; White

et al., 2008). Smith et al. (2004) evidenced a 50� dipping magma body at about 30

km depth in the Lake Tahoe area, where it stopped after propagating a few km, as

inferred from migration of induced seismicity. According to our model, this may

be explained in terms of magma meeting a rheological discontinuity.

An important role for sill formation may be played by densitystrati�cation:

preliminary tests adding to the model a density contrast superposed to the rigidity

transition, have shown that, as far as the dike density is lower than both layers, the

in�uence of density layering can change slightly the deviation due to the elastic

discontinuity but cannot be the only responsible for this phenomenon. If the �uid

density is higher than in the upper medium, the dike stops soon after reaching the

neutral buoyancy level (as already suggested by Lister & Kerr (1991)).

Further investigations considering the local and tectonicstress �eld are neces-

sary in order to establish quantitatively what implications tectonic stretching may

have on sill formation and, more generally, on the propagation path in proximity

of elastic discontinuities, since sharp stress heterogeneities typically arise from

rigidity discontinuities.

The model might be also generalised to account for viscous energy loss, pro-

vided by �uid motions and continuous magma supply from a deepsource.

The evidence for the refraction behaviour in gelatin experiments (see Fig. 6b

in Kavanagh et al., 2006, for an additional example of refraction from a compliant

to a more rigid medium) seems to be less readily available in �eld observations.

However, most observations on dikes are limited to the uppercrust, where most

dikes arrive already vertical, so that they would not be deviated as they cross a

rigidity transition; moreover, if layers near the surface are thin and rigidity con-

trasts alternate (for example a set ofr < 1 andr > 1 transitions), dikes would see

an average effective rigidity. Therefore, a �eld validation of our �ndings may be

possible in case of deep erosion of thick layers with high rigidity contrast.

5.3.1 Future work

A development of this model should be aimed at the study of dike propagation

under the effect of topographic load and tectonic stress �eld, since sharp stress
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heterogeneities typically arise from rigidity discontinuities.

Studies of dike-dike and sill-dike interaction should be another application of this

model that could be developed also to account for an interacting magma-chamber

providing a certain magma supply.

The model should be applied also to the study of the seismicity induced by dike

propagation, using a more realistic model for the Coulomb failure function. The

model might be also generalised to account for viscous energy loss, provided by

�uid motions and continuous magma supply from a deep source.
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Appendix A

In appendix A we write the functionsgx(x; z; x1; z1), gz(x; z; x1; z1), hx (x; z; x1; z1) andhz(x; z; x1; z1),

that appears in equations (2.10) and (2.11), relative to thedisplacement �eld generated by a vertically

dipping, semi-in�nite, elementary dislocation in a bounded medium.

For a tensile dislocation (eq. 2.10), theloading functionrelative to thex component of the displacement

is:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

gx (x; z > 0;x1; z1 > 0) =
1

2�

�
�( x; z; x1; z1) +

1
2(1 � � 1)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

UI
1j Y1j

gx (x; z < 0;x1; z1 > 0) =
1

2�

�
�( x; z; x1; z1) +

1
2(1 � � 2)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

UI
2j Y2j

gx (x; z > 0;x1; z1 < 0) =
1

2�

�
�( x; z; x1; z1) +

1
2(1 � � 1)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

UII
2j Y2j

gx (x; z < 0;x1; z1 < 0) =
1

2�

�
�( x; z; x1; z1) +

1
2(1 � � 2)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

UII
1j Y1j

(A.1)

wherer =
p

(x � x1)2 + ( z � z1)2 is the distance between the dislocation line and the point(x; z), � is

the function 2.4 translated of a vector(x1; z1) and matrixUI , UII andY are written respectively in (A.5),

(A.6) and (A.12).

For thez component we have:
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8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

gz(x; z > 0;x1; z1 > 0) = �
1

4� (1 � � 1)

�
(1 � 2� 1) ln

r
2c

�
(z � z1)2

r 2

�
�

4X

j =1

UI
3j Y3j

gz(x; z < 0;x1; z1 > 0) = �
1

4� (1 � � 2)

�
(1 � 2� 2) ln

r
2c

�
(z � z1)2

r 2

�
�

4X

j =1

UI
4j Y4j

gz(x; z > 0;x1; z1 < 0) = �
1

4� (1 � � 1)

�
(1 � 2� 1) ln

r
2c

�
(z � z1)2

r 2

�
�

4X

j =1

UII
4j Y4j

gz(x; z < 0;x1; z1 < 0) = �
1

4� (1 � � 2)

�
(1 � 2� 2) ln

r
2c

�
(z � z1)2

r 2

�
�

4X

j =1

UII
3j Y3j

(A.2)

wherec is needed to make non-dimensional the argument of the logarithm and, for a closed dislocation,

is its half-length.

For a dip-slip dislocation (eq. 2.11), the loading functionrelative to thex component of the displacement

is:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

hx (x; z > 0;x1; z1 > 0) =
1

4� (1 � � 1)

�
(1 � 2� 1) ln

r
2c

+
(z � z1)2

r 2

�
�

4X

j =1

T I
3j Y3j

hx (x; z < 0;x1; z1 > 0) =
1

4� (1 � � 2)

�
(1 � 2� 2) ln

r
2c

+
(z � z1)2

r 2

�
�

4X

j =1

T I
4j Y4j

hx (x; z > 0;x1; z1 < 0) =
1

4� (1 � � 1)

�
(1 � 2� 1) ln

r
2c

+
(z � z1)2

r 2

�
�

4X

j =1

T II
4j Y4j

hx (x; z < 0;x1; z1 < 0) =
1

4� (1 � � 2)

�
(1 � 2� 2) ln

r
2c

+
(z � z1)2

r 2

�
�

4X

j =1

T II
3j Y3j

(A.3)

where the matrixT I andT II are written in A.9 and A.10.

For thez component we have:
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8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

hz(x; z > 0;x1; z1 > 0) =
1

2�

�
�( x; z; x1; z1) �

1
2(1 � � 1)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

T I
1j Y1j

hz(x; z < 0;x1; z1 > 0) =
1

2�

�
�( x; z; x1; z1) �

1
2(1 � � 2)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

T I
2j Y2j

hz(x; z > 0;x1; z1 < 0) =
1

2�

�
�( x; z; x1; z1) �

1
2(1 � � 1)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

T II
2j Y2j

hz(x; z < 0;x1; z1 < 0) =
1

2�

�
�( x; z; x1; z1) �

1
2(1 � � 2)

(x � x1)(z � z1)
r 2

�
�

4X

j =1

T II
1j Y1j

(A.4)

The matrixUI andUII are:

UI =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�
1 � � 1

� 1
C2 +

1 � 2� 1

2� 1
D

1
2� 1

(C2 � D)
3 � 4� 1

2� 1
(C2 � D) �

1
� 1

(C2 � D)

�
1 � � 2

� 2
C1 +

1 � 2� 2

2� 2
D

1
2� 2

(C1 + D) �
1

2� 2
(C1 � D) 0

1 � � 1

� 1
D �

1 � 2� 1

2� 1
C2 �

1
2� 1

(C2 � D)
3 � 4� 1

2� 1
(C2 � D)

1
� 1

(C2 � D)

1 � � 2

� 2
D �

1 � 2� 2

2� 2
C1

1
2� 2

(C1 + D) �
1

2� 2
(C1 � D) 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(A.5)

UII =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�
1 � � 2

� 2
C1 �

1 � 2� 2

2� 2
D

1
2� 2

(C1 + D)
3 � 4� 2

2� 2
(C1 + D) �

1
� 2

(C1 + D)

�
1 � � 1

� 1
C2 �

1 � 2� 1

2� 1
D

1
2� 1

(C2 � D) �
1

2� 1
(C2 + D) 0

�
1 � � 2

� 2
D �

1 � 2� 2

2� 2
C1 �

1
2� 2

(C1 + D)
3 � 4� 2

2� 2
(C1 + D)

1
� 2

(C1 + D)

�
1 � � 1

� 1
D �

1 � 2� 1

2� 1
C2

1
2� 1

(C2 � D) �
1

2� 1
(C2 + D) 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(A.6)
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whereC1, C2 andD are:

C1 =
� (a1 + cp) + d

e2 � d2
C2 =

� � (a2 + cp) + d
e2 � d2

D =
�cm � e
e2 � d2

(A.7)

with:

a1 =
3 � 4� 1

4� 2
1

; a2 =
3 � 4� 2

2� 2
2

;

d =
1 � 2� 2

2� 2
�

1 � 2� 1

2� 1
; e =

1 � � 2

� 2
�

1 � � 1

� 1
;

cp =
1 + (3 � 4� 1)(3 � 4� 2)

8� 1� 2
; cm = �

1 + (3 � 4� 1)(3 � 4� 2)
8� 1� 2

;

� 1 =
1

2�
� 1

1 � � 1
; � 2 =

1
2�

� 2

1 � � 2
; � = � 2 � � 1;

 1 =
1

4�
1

1 � � 1
;  2 =

1
4�

1
1 � � 2

;  =  2 �  1:

(A.8)

The matrixT I andT II are:

T I =

0

B
B
B
B
B
B
B
B
B
B
B
@

� 1� 1 � � 2� 2  1 � 2� 2� 1 �  1 � 2� 1� 1 2( 1 � 2� 2� 1)

� 1� 1 � � 2� 2  2 � 2� 1� 2 �  2 � 2� 1� 1 0

 1 � � 1� 1 � � 2� 2  1 � 2� 2� 1  1 � 2� 1� 1 2( 1 � 2� 2� 1)

 2 � � 1� 1 � � 2� 2 �  2 + 2� 1� 2  2 � 2� 1� 1 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(A.9)
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T II =

0

B
B
B
B
B
B
B
B
B
B
B
@

� � 1� 1 + � 2� 2  2 � 2� 1� 2 �  2 + 2� 2� 2 2( 2 � 2� 1� 2)

� � 1� 1 + � 2� 2  1 � 2� 2� 1 �  1 + 2� 2� 2 0

 2 � � 1� 1 � � 2� 2  2 � 2� 1� 2  2 � 2� 2� 2 2( 2 � 2� 1� 2)

 1 � � 1� 1 � � 2� 2 �  1 + 2� 2� 1  1 � 2� 2� 2 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(A.10)

where� 1 and� 2 are:

� 1 =
1

2�
1

� 1 + (3 � 4� 1)� 2
� 2 =

1
2�

1
� 2 + (3 � 4� 2)� 1

(A.11)
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The matrixY is:
8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

Y11 =
�
2

sgn[(z1 + z)(x � x1)]

� arctan
�

z1 + z
x � x1

�

Y12 =
z(x � x1)

(x � x1)2 + ( z + z1)2

Y13 =
z1(x � x1)

(x � x1)2 + ( z + z1)2

Y14 =
2zz1(x � x1)(z1 + z)

[(x � x1)2 + ( z + z1)2]2

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

Y21 =
�
2

sgn[(z1 � z)(x � x1)]

� arctan
�

z1 � z
x � x1

�

Y22 =
z(x � x1)

(x � x1)2 + ( z � z1)2

Y23 =
z1(x � x1)

(x � x1)2 + ( z � z1)2

Y24 =
2zz1(x � x1)(z1 � z)

[(x � x1)2 + ( z � z1)2]2

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Y31 =
1
2

ln
(x � x1)2 + ( z + z1)2

(2c)2

Y32 = �
z(z + z1)

(x � x1)2 + ( z + z1)2

Y33 = �
z1(z + z1)

(x � x1)2 + ( z + z1)2

Y34 =
zz1 [(x � x1)2 � (z1 + z)2]

[(x � x1)2 + ( z + z1)2]2

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Y41 =
1
2

ln
(x � x1)2 + ( z � z1)2

(2c)2

Y42 = �
z(z � z1)

(x � x1)2 + ( z � z1)2

Y43 = �
z1(z � z1)

(x � x1)2 + ( z � z1)2

Y44 =
zz1 [(x � x1)2 � (z1 � z)2]

[(x � x1)2 + ( z � z1)2]2

(A.12)



Appendix B

In appendix B we write the functionss(x)
ij (x; z; x1; z1) and s(z)

ij (x; z; x1; z1), that appears in equations

(2.15), relative to the stress �eld generated by a vertically dipping, semi-in�nite, elementary dislocation

in a bounded medium.

For a tensile dislocation (�rst equation in 2.15), theloading functionrelative to the(xx) component of the

stress tensor is:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

s(x)
xx (x; z > 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[3(x � x1)2 + ( z � z1)2]
r 4

+

+(2 C2 � D)I 11 � (C2 � D)I 12 � 3(C2 � D)I 13 + 2( C2 � D)I 14

s(x)
xx (x; z < 0;x1; z1 > 0) = �

� 2

2� (1 � � 2)
�

(z � z1)[3(x � x1)2 + ( z � z1)2]
r 4

+

� (2C1 + D)I 21 � (C1 + D)I 22 + ( C1 � D)I 23

s(x)
xx (x; z > 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[3(x � x1)2 + ( z � z1)2]
r 4

+

� (2C2 � D)I 21 � (C2 � D)I 22 + ( C2 + D)I 23

s(x)
xx (x; z < 0;x1; z1 < 0) = �

� 2

2� (1 � � 2)
�

(z � z1)[3(x � x1)2 + ( z � z1)2]
r 4

+

+(2 C1 + D)I 11 � (C1 + D)I 12 � 3(C1 + D)I 13 + 2( C1 + D)I 14

(B.1)

99



100 APPENDIX B.

wherer =
p

(x � x1)2 + ( z � z1)2 is the distance between the dislocation line and the point(x; z), C1,

C2 andD are written in (A.7),I is written in (refB:11).

For the(xz) component we have:

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

s(x)
xz (x; z > 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GI
3j I 3j

s(x)
xz (x; z < 0;x1; z1 > 0) = �

� 2

2� (1 � � 2)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GI
4j I 4j

s(x)
xz (x; z > 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GII
4j I 4j

s(x)
xz (x; z < 0;x1; z1 < 0) = �

� 2

2� (1 � � 2)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GII
3j I 3j

(B.2)

whereGI andGII are written in (B.7) and (B.8).

For the(zz) component we have:

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

s(x)
zz (x; z > 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GI
1j I 1j

s(x)
zz (x; z < 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GI
2j I 2j

s(x)
zz (x; z > 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GII
2j I 2j

s(x)
zz (x; z < 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

�
4X

j =1

GII
1j I 1j

(B.3)
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For a dip-slip dislocation (second equation in 2.15), the loading function relative to the(xx) component

of the displacement is:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

s(z)
xx (x; z > 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

+

� (C2 � 2D)I 31 + ( C2 � D)I 32 � 3(C2 � D)I 33 + 2( C2 � D)I 34

s(z)
xx (x; z < 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

+

� (C1 + 2D)I 41 � (C1 + D)I 42 + ( C1 � D)I 43

s(z)
xx (x; z > 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

+

� (C2 � 2D)I 41 � (C2 � D)I 42 + ( C2 + D)I 43

s(z)
xx (x; z < 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(x � x1)[(z � z1)2 � (x � x1)2]
r 4

+

� (C1 � 2D)I 31 + ( C1 + D)I 32 � 3(C1 + D)I 33 + 2( C1 + D)I 34

(B.4)

For the(xz) component we have:
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8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

s(z)
xz (x; z > 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

+
4X

j =1

F I
1j I 1j

s(z)
xz (x; z < 0;x1; z1 > 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

+
4X

j =1

F I
2j I 2j

s(z)
xz (x; z > 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

+
4X

j =1

F II
2j I 2j

s(z)
xz (x; z < 0;x1; z1 < 0) = �

� 1

2� (1 � � 1)
�

(z � z1)[(z � z1)2 � (x � x1)2]
r 4

+
4X

j =1

F II
1j I 1j

(B.5)

whereF I andF II are written in B.9 and B.10.

For thezz component we have:

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

s(z)
zz (x; z > 0;x1; z1 > 0) =

� 1

2� (1 � � 1)
�

(x � x1)[(x � x1)2 + 3( z � z1)2]
r 4

+
4X

j =1

F I
3j I 3j

s(z)
zz (x; z < 0;x1; z1 > 0) =

� 1

2� (1 � � 1)
�

(x � x1)[(x � x1)2 + 3( z � z1)2]
r 4

+
4X

j =1

F I
4j I 4j

s(z)
zz (x; z > 0;x1; z1 < 0) =

� 1

2� (1 � � 1)
�

(x � x1)[(x � x1)2 + 3( z � z1)2]
r 4

+
4X

j =1

F II
4j I 4j

s(z)
zz (x; z < 0;x1; z1 < 0) =

� 1

2� (1 � � 1)
�

(x � x1)[(x � x1)2 + 3( z � z1)2]
r 4

+
4X

j =1

F II
3j I 3j

(B.6)
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The matrixGI andGII are:

GI =

0

B
B
B
B
B
B
B
B
B
B
B
@

D � (C2 � D) C2 � D 2(C2 � D)

D � (C1 + D) C1 � D 0

C2 � (C2 � D) � (C2 � D) 2(C2 � D)

C1 C1 + D � (C1 � D) 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(B.7)

GII =

0

B
B
B
B
B
B
B
B
B
B
B
@

� D � (C1 + D) C1 + D 2(C1 + D)

� D � (C2 � D) C2 + D 0

C1 � (C1 + D) � (C1 + D) 2(C1 + D)

C2 C2 � D � (C2 + D) 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(B.8)

The matrixF I andF II are:

F I =

0

B
B
B
B
B
B
B
B
B
B
B
@

D C2 � D � (C2 � D) 2(C2 � D)

D C1 + D � (C1 � D) 0

� C2 � (C2 � D) � (C2 � D) � 2(C2 � D)

� C1 C1 + D � (C1 � D) 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(B.9)
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F II =

0

B
B
B
B
B
B
B
B
B
B
B
@

� D C1 + D � (C1 + D) 2(C1 + D)

� D C2 � D � (C2 + D) 0

� C1 � (C1 + D) � (C1 + D) � 2(C1 + D)

� C2 C2 � D � (C2 + D) 0

1

C
C
C
C
C
C
C
C
C
C
C
A

(B.10)

The matrixI is:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

I 11 =
z + z0

(x � x0)2 + ( z + z0)2

I 12 = z
(z + z0)2 � (x � x0)2

[(x � x0)2 + ( z + z0)2]2

I 13 = z0
(z + z0)2 � (x � x0)2

[(x � x0)2 + ( z + z0)2]2

I 14 = 2zz0
(z + z0)[(z + z0)2 � 3(x � x0)2]

[(x � x0)2 + ( z + z0)2]3

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

I 21 =
z � z0

(x � x0)2 + ( z � z0)2

I 22 = z
(z � z0)2 � (x � x0)2

[(x � x0)2 + ( z � z0)2]2

I 23 = z0
(z � z0)2 � (x � x0)2

[(x � x0)2 + ( z � z0)2]2

I 24 = 2zz0
(z � z0)[(z � z0)2 � 3(x � x0)2]

[(x � x0)2 + ( z � z0)2]3

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

I 31 =
x � x0

(x � x0)2 + ( z + z0)2

I 32 = 2z
(z + z0)(x � x0)

[(x � x0)2 + ( z + z0)2]2

I 33 = 2z0
(z + z0)(x � x0)

[(x � x0)2 + ( z + z0)2]2

I 34 = 2zz0
(x � x0)[3(z + z0)2 � (x � x0)2]

[(x � x0)2 + ( z + z0)2]3

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

I 41 =
x � x0

(x � x0)2 + ( z � z0)2

I 42 = 2z
(z � z0)(x � x0)

[(x � x0)2 + ( z � z0)2]2

I 43 = 2z0
(z � z0)(x � x0)

[(x � x0)2 + ( z � z0)2]2

I 44 = 2zz0
(x � x0)[3(z � z0)2 � (x � x0)2]

[(x � x0)2 + ( z � z0)2]3

(B.11)
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